Análise FOMO - Evania

#Carregando biblioteca

library(lavaan)
library(readxl)
data <- read_excel("/Volumes/Documentos/Dropbox (Profissional)/Universo/Colaborações Cristina/Coloboracões Evania/pesquisa/Arquivo_Final.xlsx")
View(data)
dta<-data
dta_CFA<-dta

Modelo 1 FOMO - RMSEA alto

# specify the model
CFA.model <-'
exclusao_rel =~ FOMO1 + FOMO2 + FOMO3 + FOMO4 + FOMO5
exclusao_info =~ FOMO6 + FOMO7 + FOMO8 + FOMO9+ FOMO10
'
# fit the model
fit <- cfa(model=CFA.model,data=dta_CFA,ordered=TRUE,estimator="ULSMV")
# display summary output
summary(fit, fit.measures=TRUE,standardized=T, rsquare=T)
lavaan 0.6-7 ended normally after 24 iterations

  Estimator                                        ULS
  Optimization method                           NLMINB
  Number of free parameters                         51
                                                      
  Number of observations                           519
                                                      
Model Test User Model:
                                              Standard      Robust
  Test Statistic                                47.383     256.756
  Degrees of freedom                                34          34
  P-value (Unknown)                                 NA       0.000
  Scaling correction factor                                  0.195
  Shift parameter                                           13.588
       simple second-order correction                             

Model Test Baseline Model:

  Test statistic                             10700.188    9124.903
  Degrees of freedom                                45          45
  P-value                                           NA       0.000
  Scaling correction factor                                  1.177

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.999       0.975
  Tucker-Lewis Index (TLI)                       0.998       0.968
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Root Mean Square Error of Approximation:

  RMSEA                                          0.028       0.112
  90 Percent confidence interval - lower         0.000       0.100
  90 Percent confidence interval - upper         0.045       0.126
  P-value RMSEA <= 0.05                          0.986       0.000
                                                                  
  Robust RMSEA                                                  NA
  90 Percent confidence interval - lower                        NA
  90 Percent confidence interval - upper                        NA

Standardized Root Mean Square Residual:

  SRMR                                           0.041       0.041

Parameter Estimates:

  Standard errors                           Robust.sem
  Information                                 Expected
  Information saturated (h1) model        Unstructured

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  exclusao_rel =~                                                       
    FOMO1             1.000                               0.901    0.901
    FOMO2             0.986    0.019   51.397    0.000    0.888    0.888
    FOMO3             1.008    0.019   52.143    0.000    0.908    0.908
    FOMO4             0.888    0.022   40.697    0.000    0.801    0.801
    FOMO5             0.919    0.024   38.254    0.000    0.829    0.829
  exclusao_info =~                                                      
    FOMO6             1.000                               0.882    0.882
    FOMO7             1.119    0.021   54.177    0.000    0.987    0.987
    FOMO8             1.062    0.022   48.823    0.000    0.936    0.936
    FOMO9             0.987    0.022   43.890    0.000    0.871    0.871
    FOMO10            1.029    0.022   46.418    0.000    0.907    0.907

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  exclusao_rel ~~                                                       
    exclusao_info     0.561    0.025   22.150    0.000    0.705    0.705

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .FOMO1             0.000                               0.000    0.000
   .FOMO2             0.000                               0.000    0.000
   .FOMO3             0.000                               0.000    0.000
   .FOMO4             0.000                               0.000    0.000
   .FOMO5             0.000                               0.000    0.000
   .FOMO6             0.000                               0.000    0.000
   .FOMO7             0.000                               0.000    0.000
   .FOMO8             0.000                               0.000    0.000
   .FOMO9             0.000                   "verbose"    0.000    0.000
   .FOMO10            0.000                               0.000    0.000
    exclusao_rel      0.000                               0.000    0.000
    exclusao_info     0.000                               0.000    0.000

Thresholds:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    FOMO1|t1         -0.875    0.063  -13.790    0.000   -0.875   -0.875
    FOMO1|t2         -0.007    0.055   -0.132    0.895   -0.007   -0.007
    FOMO1|t3          0.484    0.057    8.427    0.000    0.484    0.484
    FOMO1|t4          1.452    0.082   17.634    0.000    1.452    1.452
    FOMO2|t1         -1.060    0.068  -15.607    0.000   -1.060   -1.060
    FOMO2|t2          0.041    0.055    0.745    0.456    0.041    0.041
    FOMO2|t3          0.452    0.057    7.908    0.000    0.452    0.452
    FOMO2|t4          1.573    0.089   17.753    0.000    1.573    1.573
    FOMO3|t1         -1.140    0.070  -16.223    0.000   -1.140   -1.140
    FOMO3|t2          0.022    0.055    0.395    0.693    0.022    0.022
    FOMO3|t3          0.352    0.056    6.258    0.000    0.352    0.352
    FOMO3|t4          1.682    0.095   17.665    0.000    1.682    1.682
    FOMO4|t1         -0.716    0.061  -11.831    0.000   -0.716   -0.716
    FOMO4|t2          0.286    0.056    5.124    0.000    0.286    0.286
    FOMO4|t3          0.813    0.062   13.067    0.000    0.813    0.813
    FOMO4|t4          1.644    0.093   17.717    0.000    1.644    1.644
    FOMO5|t1         -0.979    0.066  -14.875    0.000   -0.979   -0.979
    FOMO5|t2         -0.022    0.055   -0.395    0.693   -0.022   -0.022
    FOMO5|t3          0.312    0.056    5.560    0.000    0.312    0.312
    FOMO5|t4          1.663    0.094   17.694    0.000    1.663    1.663
    FOMO6|t1         -1.399    0.080  -17.507    0.000   -1.399   -1.399
    FOMO6|t2         -0.614    0.059  -10.399    0.000   -0.614   -0.614
    FOMO6|t3         -0.271    0.056   -4.862    0.000   -0.271   -0.271
    FOMO6|t4          0.941    0.065   14.494    0.000    0.941    0.941
    FOMO7|t1         -1.510    0.085  -17.720    0.000   -1.510   -1.510
    FOMO7|t2         -0.691    0.060  -11.497    0.000   -0.691   -0.691
    FOMO7|t3         -0.415    0.057   -7.301    0.000   -0.415   -0.415
    FOMO7|t4          0.868    0.063   13.711    0.000    0.868    0.868
    FOMO8|t1         -1.724    0.098  -17.587    0.000   -1.724   -1.724
    FOMO8|t2         -0.861    0.063  -13.631    0.000   -0.861   -0.861
    FOMO8|t3         -0.479    0.057   -8.340    0.000   -0.479   -0.479
    FOMO8|t4          0.833    0.063   13.310    0.000    0.833    0.833
    FOMO9|t1         -1.466    0.083  -17.660    0.000   -1.466   -1.466
    FOMO9|t2         -0.625    0.059  -10.568    0.000   -0.625   -0.625
    FOMO9|t3         -0.227    0.056   -4.075    0.000   -0.227   -0.227
    FOMO9|t4          1.027    0.067   15.319    0.000    1.027    1.027
    FOMO10|t1        -1.541    0.087  -17.744    0.000   -1.541   -1.541
    FOMO10|t2        -0.691    0.060  -11.497    0.000   -0.691   -0.691
    FOMO10|t3        -0.389    0.057   -6.867    0.000   -0.389   -0.389
    FOMO10|t4         1.077    0.068   15.748    0.000    1.077    1.077

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .FOMO1             0.188                               0.188    0.188
   .FOMO2             0.211                               0.211    0.211
   .FOMO3             0.175                               0.175    0.175
   .FOMO4             0.359                               0.359    0.359
   .FOMO5             0.313                               0.313    0.313
   .FOMO6             0.222                               0.222    0.222
   .FOMO7             0.026                               0.026    0.026
   .FOMO8             0.123                               0.123    0.123
   .FOMO9             0.242                               0.242    0.242
   .FOMO10            0.177                               0.177    0.177
    exclusao_rel      0.812    0.025   33.051    0.000    1.000    1.000
    exclusao_info     0.778    0.026   30.230    0.000    1.000    1.000

Scales y*:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    FOMO1             1.000                               1.000    1.000
    FOMO2             1.000                               1.000    1.000
    FOMO3             1.000                               1.000    1.000
    FOMO4             1.000                               1.000    1.000
    FOMO5             1.000                               1.000    1.000
    FOMO6             1.000                               1.000    1.000
    FOMO7             1.000                               1.000    1.000
    FOMO8             1.000                               1.000    1.000
    FOMO9             1.000                               1.000    1.000
    FOMO10            1.000                               1.000    1.000

R-Square:
                   Estimate
    FOMO1             0.812
    FOMO2             0.789
    FOMO3             0.825
    FOMO4             0.641
    FOMO5             0.687
    FOMO6             0.778
    FOMO7             0.974
    FOMO8             0.877
    FOMO9             0.758
    FOMO10            0.823
modificationindices(object = fit,sort. = T)

Modelo FOMO - após indice de modificação

# specify the model
CFA.model <-'
exclusao_rel =~ FOMO1 + FOMO2 + FOMO3 + FOMO4 + FOMO5
exclusao_info =~ FOMO6 + FOMO7 + FOMO8 + FOMO9+ FOMO10
FOMO2 ~~ FOMO3
'
# fit the model
fit <- cfa(model=CFA.model,data=dta_CFA,ordered=TRUE,estimator="ULSMV")
# display summary output
summary(fit, fit.measures=TRUE,standardized=T, rsquare=T)
modificationindices(object = fit,sort. = T)
library(semTools)
semTools::reliability(fit)
library(semMediation)
Registered S3 method overwritten by 'htmlwidgets':
  method           from         
  print.htmlwidget tools:rstudio
Registered S3 method overwritten by 'data.table':
  method           from
  print.data.table     
discriminantValidityTable(fit)
For constructs with categorical indicators, the alpha and the average variance extracted are calculated from polychoric (polyserial) correlations, not from Pearson correlations.
library(semPlot)
Registered S3 methods overwritten by 'lme4':
  method                          from
  cooks.distance.influence.merMod car 
  influence.merMod                car 
  dfbeta.influence.merMod         car 
  dfbetas.influence.merMod        car 
Registered S3 methods overwritten by 'huge':
  method    from   
  plot.sim  BDgraph
  print.sim BDgraph
semPaths(fit,what="std", residuals = F, thresholds =F, intercepts = F,edge.label.cex =1)

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBBbsOhbGlzZSBGT01PIC0gRXZhbmlhCgojQ2FycmVnYW5kbyBiaWJsaW90ZWNhCgpgYGB7cn0KbGlicmFyeShsYXZhYW4pCmBgYAoKCmBgYHtyfQpsaWJyYXJ5KHJlYWR4bCkKZGF0YSA8LSByZWFkX2V4Y2VsKCIvVm9sdW1lcy9Eb2N1bWVudG9zL0Ryb3Bib3ggKFByb2Zpc3Npb25hbCkvVW5pdmVyc28vQ29sYWJvcmFjzKdvzINlcyBDcmlzdGluYS9Db2xvYm9yYWNvzINlcyBFdmFuaWEvcGVzcXVpc2EvQXJxdWl2b19GaW5hbC54bHN4IikKCmNmYShtb2RlbCA9Q0ZBLm1vZGVsLGRhdGE9ZHRhX0NGQSkKVmlldyhkYXRhKQpgYGAKCmBgYHtyfQpkdGE8LWRhdGEKYGBgCgpgYGB7cn0KZHRhX0NGQTwtZHRhCmBgYAoKCk1vZGVsbyAxIEZPTU8gLSBSTVNFQSBhbHRvCmBgYHtyfQojIHNwZWNpZnkgdGhlIG1vZGVsCkNGQS5tb2RlbCA8LScKZXhjbHVzYW9fcmVsID1+IEZPTU8xICsgRk9NTzIgKyBGT01PMyArIEZPTU80ICsgRk9NTzUKZXhjbHVzYW9faW5mbyA9fiBGT01PNiArIEZPTU83ICsgRk9NTzggKyBGT01POSsgRk9NTzEwCicKYGBgCgpgYGB7cn0KIyBmaXQgdGhlIG1vZGVsCmZpdCA8LSBjZmEobW9kZWw9Q0ZBLm1vZGVsLGRhdGE9ZHRhX0NGQSxvcmRlcmVkPVRSVUUsZXN0aW1hdG9yPSJVTFNNViIpCmBgYAoKYGBge3J9CiMgZGlzcGxheSBzdW1tYXJ5IG91dHB1dApzdW1tYXJ5KGZpdCwgZml0Lm1lYXN1cmVzPVRSVUUsc3RhbmRhcmRpemVkPVQsIHJzcXVhcmU9VCkKd3JpdGUuY3N2KGR0YV9DRkEsImR0YV9DRkEuY3N2IikKYGBgCgoKYGBge3J9Cm1vZGlmaWNhdGlvbmluZGljZXMob2JqZWN0ID0gZml0LHNvcnQuID0gVCkKYGBgCgoKTW9kZWxvIEZPTU8gLSBhcMOzcyBpbmRpY2UgZGUgbW9kaWZpY2HDp8OjbwoKYGBge3J9CiMgc3BlY2lmeSB0aGUgbW9kZWwKQ0ZBLm1vZGVsIDwtJwpleGNsdXNhb19yZWwgPX4gRk9NTzEgKyBGT01PMiArIEZPTU8zICsgRk9NTzQgKyBGT01PNQpleGNsdXNhb19pbmZvID1+IEZPTU82ICsgRk9NTzcgKyBGT01POCArIEZPTU85KyBGT01PMTAKRk9NTzIgfn4gRk9NTzMKJwpgYGAKCmBgYHtyfQojIGZpdCB0aGUgbW9kZWwKZml0IDwtIGNmYShtb2RlbD1DRkEubW9kZWwsZGF0YT1kdGFfQ0ZBLG9yZGVyZWQ9VFJVRSxlc3RpbWF0b3I9IlVMU01WIikKYGBgCgpgYGB7cn0KIyBkaXNwbGF5IHN1bW1hcnkgb3V0cHV0CnN1bW1hcnkoZml0LCBmaXQubWVhc3VyZXM9VFJVRSxzdGFuZGFyZGl6ZWQ9VCwgcnNxdWFyZT1UKQpgYGAKCmBgYHtyfQptb2RpZmljYXRpb25pbmRpY2VzKG9iamVjdCA9IGZpdCxzb3J0LiA9IFQpCmBgYAoKYGBge3J9CmxpYnJhcnkoc2VtVG9vbHMpCnNlbVRvb2xzOjpyZWxpYWJpbGl0eShmaXQpCmBgYAoKYGBge3J9CmxpYnJhcnkoc2VtTWVkaWF0aW9uKQpkaXNjcmltaW5hbnRWYWxpZGl0eVRhYmxlKGZpdCkKYGBgCgpgYGB7cn0KbGlicmFyeShzZW1QbG90KQpzZW1QYXRocyhmaXQsd2hhdD0ic3RkIiwgcmVzaWR1YWxzID0gRiwgdGhyZXNob2xkcyA9RiwgaW50ZXJjZXB0cyA9IEYsZWRnZS5sYWJlbC5jZXggPTEpCmBgYAoK