library(agricolae)
dates<-c(14,21,28)# days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audps(evaluation,dates)
## evaluation
## 1470
audps(evaluation,dates,"relative")
## evaluation
## 0.7
x<-seq(10.5,31.5,7)
y<-c(40,80,90,90)
plot(x,y,"s",ylim=c(0,100),xlim=c(10,32),axes=FALSE,col="red" ,ylab="",xlab="")
title(cex.main=0.8,main="Absolute or Relative AUDPS\nTotal area=(31.5-10.5)*100=2100", ylab="Evaluation",xlab="Dates")
points(x,y,type="h")
z<-c(14,21,28)
points(z,y[-3],col="blue",lty=2,pch=19)
points(z,y[-3],col="blue",lty=2,pch=19)
axis(1,x,pos=0)
axis(2,c(0,40,80,90,100),las=2)
text(dates,evaluation+5,dates,col="blue")
text(14,20,"A = (17.5-10.5)*40",cex=0.8)
text(21,40,"B = (24.5-17.5)*80",cex=0.8)
text(28,60,"C = (31.5-24.5)*90",cex=0.8)
text(14,95,"audps = A+B+C = 1470")
text(14,90,"relative = audps/area = 0.7")
# It calculates audpc absolute
absolute<-audps(evaluation,dates,type="absolute")
print(absolute)
## evaluation
## 1470
rm(evaluation,dates,absolute)
library(agricolae)
dates<-c(14,21,28)# days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audps(evaluation,dates)
## evaluation
## 1470
audps(evaluation,dates,"relative")
## evaluation
## 0.7
mi_audps<-function(t,y){
audps(y,t)
}
tiempos = seq(7,70,7)
dano=sort(runif(n=length(tiempos),
min=5,80))
mi_audps(tiempos,dano)
## evaluation
## 3768.107
mi_trat_audps <- function(yt){
salida = c()
t =unlist(yt[,1])
print(t)
for (i in seq(2,ncol(yt))) {
salida[i] = mi_audps(t = t, y = unlist(yt[,i]))
}
salida = salida[-1]
return(salida) }
library(readxl)
df_da <- read_excel("enfer.xlsx")
df_da
## # A tibble: 10 x 4
## tiempo D_t1 D_t2 D_t3
## <dbl> <dbl> <dbl> <dbl>
## 1 7 11.6 22.3 10.8
## 2 14 17.0 42.0 21.1
## 3 21 18.9 42.6 30.9
## 4 28 23.3 48.0 32.8
## 5 35 45.4 49.0 41.6
## 6 42 45.5 62.0 47.9
## 7 49 54.6 67.3 51.4
## 8 56 67.9 73.8 60.1
## 9 63 75.8 79.4 61.8
## 10 70 77.7 79.5 74.6
mi_trat_audps(df_da)
## tiempo1 tiempo2 tiempo3 tiempo4 tiempo5 tiempo6 tiempo7 tiempo8
## 7 14 21 28 35 42 49 56
## tiempo9 tiempo10
## 63 70
## [1] 3064.596 3961.328 3031.767
audps_trat = mi_trat_audps(df_da)
## tiempo1 tiempo2 tiempo3 tiempo4 tiempo5 tiempo6 tiempo7 tiempo8
## 7 14 21 28 35 42 49 56
## tiempo9 tiempo10
## 63 70
dfg = data.frame(t = rep(df_da$tiempo, 3),
y = c(df_da$D_t1,df_da$D_t2,df_da$D_t3),
trat = rep(1:3, each=nrow(df_da)))
df_texto = data.frame(label = round(audps_trat,2), trat = 1:3)
library(ggplot2)
ggplot(data = dfg, aes(x = t, y = y))+
geom_line()+
geom_text(data = df_texto,
mapping = aes(x = 20, y = 60, label = label))+
facet_wrap(~trat)
library(lattice)
xyplot(y~t|trat, data = dfg, t='l')
library(ggpubr)
daño<-round(dfg$y,2)
tiempo<-round(dfg$t,2)
Tratamiento<-as.character(dfg$trat)
datosg1<-data.frame(tiempo,Tratamiento,daño)
df_texto <- data.frame(label = round(audps_trat,2), trat = 1:3)
ggline(datosg1,x="tiempo",y= "daño",linetype = "Tratamiento",shape = "Tratamiento",
ylab = "Daño (%)",color = "Tratamiento",xlab = "Tiempo (días)",
main="Curva de progreso de la enfermedad",cex.main=3,facet.by ="Tratamiento",ggtheme = theme_grey(base_size = 12),label=nrow(df_texto)+
facet_wrap(~Tratamiento),font.label=list(size=14,face="italic",color="black"),legend="bottom",palette = c("#00AFBB", "#E7B800","#8E44AD")) +
theme(plot.title = element_text(hjust = 0.5))
Instalamos el paquete plyr y plotly.
library(plyr)
abc<-ddply(datosg1,c("Tratamiento","tiempo"),summarise,length=mean(daño))
library(plotly)
imag<- plot_ly(abc, x = ~tiempo, y = ~daño, mode = 'lines', linetype = ~Tratamiento, color = Tratamiento)
imag<-imag %>% layout(title = 'Curva de progreso de la enfermedad',xaxis = list(title = 'Tiempo (días)'),yaxis = list (title = 'Daño (%)'))
imag
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.