LINK="https://docs.google.com/spreadsheets/d/e/2PACX-1vSa8xFQmm0Bhkci8Hnsa1sTJw3JECiV1hUE9UYHjpK8DAtiKqqti99vqPFrOdks2owPnCMJv3NUuNBr/pub?output=csv"
IDH=read.csv(LINK,stringsAsFactors = F)
head(IDH)
##    X                                                              X.1      X.2
## 1 NA                               Ã\215ndice de desarrollo humano (IDH)         
## 2 NA (índice entre 0 y 1, donde 1 representa más desarrollo humano)         
## 3 NA                                                                          
## 4 NA                                                                          
## 5 NA                                                                          
## 6 NA                                                                  Amazonas
##       X.3     X.4     X.5  X.6               X.7
## 1                                   Fuente: PNUD
## 2                              Elaboración: IPE
## 3                                               
## 4                                               
## 5    1993    2000    2007 2012                  
## 6   0,47    0,52    0,57  0,38
str(IDH)
## 'data.frame':    31 obs. of  8 variables:
##  $ X  : logi  NA NA NA NA NA NA ...
##  $ X.1: chr  "Ã\215ndice de desarrollo humano (IDH)" "(índice entre 0 y 1, donde 1 representa más desarrollo humano)" "" "" ...
##  $ X.2: chr  "" "" "" "" ...
##  $ X.3: chr  "" "" "" "" ...
##  $ X.4: chr  "" "" "" "" ...
##  $ X.5: chr  "" "" "" "" ...
##  $ X.6: chr  "" "" "" "" ...
##  $ X.7: chr  "Fuente: PNUD" "Elaboración: IPE" "" "" ...
IDH[,c(3:6)]=lapply(IDH[,c(3:6)], as.factor)
summary(IDH)
##     X               X.1                   X.2          X.3          X.4    
##  Mode:logical   Length:31                   : 6          : 5          : 5  
##  NA's:31        Class :character   Amazonas : 1     0,45 : 3     0,58 : 3  
##                 Mode  :character   Ancash   : 1     0,53 : 3     0,62 : 3  
##                                    Apurímac: 1     0,52 : 2     0,46 : 2  
##                                    Arequipa : 1     0,54 : 2     0,49 : 2  
##                                    Ayacucho : 1     0,59 : 2     0,55 : 2  
##                                    (Other)  :20   (Other):14   (Other):14  
##       X.5        X.6                X.7           
##         :5   Length:31          Length:31         
##    0,65 :5   Class :character   Class :character  
##    0,56 :4   Mode  :character   Mode  :character  
##    0,60 :4                                        
##    0,59 :3                                        
##    0,62 :3                                        
##  (Other):7
table(IDH$X.2)
## 
##                    Amazonas        Ancash     Apurímac      Arequipa 
##             6             1             1             1             1 
##      Ayacucho     Cajamarca         Cusco      Huánuco  Huancavelica 
##             1             1             1             1             1 
##           Ica        Junín   La Libertad    Lambayeque          Lima 
##             1             1             1             1             1 
##        Loreto Madre de Dios      Moquegua         Pasco         Perú 
##             1             1             1             1             1 
##         Piura          Puno    San Martin         Tacna        Tumbes 
##             1             1             1             1             1 
##       Ucayali 
##             1
table(IDH$X.3)
## 
##           0,37    0,40    0,42    0,45    0,47    0,48    0,52    0,53    0,54  
##       5       1       1       1       3       1       1       2       3       2 
##   0,58    0,59    0,60    0,61    0,62    0,64    0,65    0,71    0,75     1993 
##       1       2       1       1       1       1       1       1       1       1
table(IDH$X.4)
## 
##           0,46    0,49    0,50    0,51    0,52    0,54    0,55    0,56    0,57  
##       5       2       2       1       1       1       1       2       1       1 
##   0,58    0,61    0,62    0,63    0,64    0,67    0,68    0,75     2000 
##       3       1       3       1       1       2       1       1       1
table(IDH$X.5)
## 
##           0,54    0,56    0,57    0,58    0,59    0,60    0,62    0,63    0,65  
##       5       1       4       2       1       3       4       3       1       5 
##   0,68     2007 
##       1       1
table(IDH$X.6)
## 
##      0,30 0,33 0,34 0,37 0,38 0,39 0,40 0,41 0,43 0,44 0,45 0,46 0,47 0,51 0,52 
##    5    1    1    1    1    2    1    1    1    2    3    1    1    1    1    1 
## 0,54 0,56 0,58 0,62 0,63 2012 
##    1    2    1    1    1    1
library(questionr)
## Warning: package 'questionr' was built under R version 4.0.2
freqOrd=freq(IDH$X.2,cum = T)
freqOrd
##               n    % val%  %cum val%cum
##               6 19.4 19.4  19.4    19.4
## Amazonas      1  3.2  3.2  22.6    22.6
## Ancash        1  3.2  3.2  25.8    25.8
## Apurímac     1  3.2  3.2  29.0    29.0
## Arequipa      1  3.2  3.2  32.3    32.3
## Ayacucho      1  3.2  3.2  35.5    35.5
## Cajamarca     1  3.2  3.2  38.7    38.7
## Cusco         1  3.2  3.2  41.9    41.9
## Huánuco      1  3.2  3.2  45.2    45.2
## Huancavelica  1  3.2  3.2  48.4    48.4
## Ica           1  3.2  3.2  51.6    51.6
## Junín        1  3.2  3.2  54.8    54.8
## La Libertad   1  3.2  3.2  58.1    58.1
## Lambayeque    1  3.2  3.2  61.3    61.3
## Lima          1  3.2  3.2  64.5    64.5
## Loreto        1  3.2  3.2  67.7    67.7
## Madre de Dios 1  3.2  3.2  71.0    71.0
## Moquegua      1  3.2  3.2  74.2    74.2
## Pasco         1  3.2  3.2  77.4    77.4
## Perú         1  3.2  3.2  80.6    80.6
## Piura         1  3.2  3.2  83.9    83.9
## Puno          1  3.2  3.2  87.1    87.1
## San Martin    1  3.2  3.2  90.3    90.3
## Tacna         1  3.2  3.2  93.5    93.5
## Tumbes        1  3.2  3.2  96.8    96.8
## Ucayali       1  3.2  3.2 100.0   100.0
library(questionr)
freqOrd=freq(IDH$X.3,cum = T)
freqOrd
##         n    % val%  %cum val%cum
##         5 16.1 16.1  16.1    16.1
##   0,37  1  3.2  3.2  19.4    19.4
##   0,40  1  3.2  3.2  22.6    22.6
##   0,42  1  3.2  3.2  25.8    25.8
##   0,45  3  9.7  9.7  35.5    35.5
##   0,47  1  3.2  3.2  38.7    38.7
##   0,48  1  3.2  3.2  41.9    41.9
##   0,52  2  6.5  6.5  48.4    48.4
##   0,53  3  9.7  9.7  58.1    58.1
##   0,54  2  6.5  6.5  64.5    64.5
##   0,58  1  3.2  3.2  67.7    67.7
##   0,59  2  6.5  6.5  74.2    74.2
##   0,60  1  3.2  3.2  77.4    77.4
##   0,61  1  3.2  3.2  80.6    80.6
##   0,62  1  3.2  3.2  83.9    83.9
##   0,64  1  3.2  3.2  87.1    87.1
##   0,65  1  3.2  3.2  90.3    90.3
##   0,71  1  3.2  3.2  93.5    93.5
##   0,75  1  3.2  3.2  96.8    96.8
## 1993    1  3.2  3.2 100.0   100.0
freqOrd=data.frame(X.2=row.names(freqOrd),
                   freqOrd,
                   row.names = NULL)
freqOrd
##        X.2 n   X. val. X.cum val.cum
## 1          5 16.1 16.1  16.1    16.1
## 2    0,37  1  3.2  3.2  19.4    19.4
## 3    0,40  1  3.2  3.2  22.6    22.6
## 4    0,42  1  3.2  3.2  25.8    25.8
## 5    0,45  3  9.7  9.7  35.5    35.5
## 6    0,47  1  3.2  3.2  38.7    38.7
## 7    0,48  1  3.2  3.2  41.9    41.9
## 8    0,52  2  6.5  6.5  48.4    48.4
## 9    0,53  3  9.7  9.7  58.1    58.1
## 10   0,54  2  6.5  6.5  64.5    64.5
## 11   0,58  1  3.2  3.2  67.7    67.7
## 12   0,59  2  6.5  6.5  74.2    74.2
## 13   0,60  1  3.2  3.2  77.4    77.4
## 14   0,61  1  3.2  3.2  80.6    80.6
## 15   0,62  1  3.2  3.2  83.9    83.9
## 16   0,64  1  3.2  3.2  87.1    87.1
## 17   0,65  1  3.2  3.2  90.3    90.3
## 18   0,71  1  3.2  3.2  93.5    93.5
## 19   0,75  1  3.2  3.2  96.8    96.8
## 20    1993 1  3.2  3.2 100.0   100.0
freqOrd=data.frame(X.3=row.names(freqOrd),
                   freqOrd,
                   row.names = NULL)
freqOrd
##    X.3     X.2 n   X. val. X.cum val.cum
## 1    1         5 16.1 16.1  16.1    16.1
## 2    2   0,37  1  3.2  3.2  19.4    19.4
## 3    3   0,40  1  3.2  3.2  22.6    22.6
## 4    4   0,42  1  3.2  3.2  25.8    25.8
## 5    5   0,45  3  9.7  9.7  35.5    35.5
## 6    6   0,47  1  3.2  3.2  38.7    38.7
## 7    7   0,48  1  3.2  3.2  41.9    41.9
## 8    8   0,52  2  6.5  6.5  48.4    48.4
## 9    9   0,53  3  9.7  9.7  58.1    58.1
## 10  10   0,54  2  6.5  6.5  64.5    64.5
## 11  11   0,58  1  3.2  3.2  67.7    67.7
## 12  12   0,59  2  6.5  6.5  74.2    74.2
## 13  13   0,60  1  3.2  3.2  77.4    77.4
## 14  14   0,61  1  3.2  3.2  80.6    80.6
## 15  15   0,62  1  3.2  3.2  83.9    83.9
## 16  16   0,64  1  3.2  3.2  87.1    87.1
## 17  17   0,65  1  3.2  3.2  90.3    90.3
## 18  18   0,71  1  3.2  3.2  93.5    93.5
## 19  19   0,75  1  3.2  3.2  96.8    96.8
## 20  20    1993 1  3.2  3.2 100.0   100.0
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.2
base = ggplot(data=freqOrd,aes(x=X.2,y=n)) 
base1= base + scale_x_discrete(limits=freqOrd$X.2)
bar1 = base1 + geom_bar(stat='identity') 
bar1

bar1 + labs(x="Departamentos", 
            y="Cantidad",
            title="IDH Perú", 
            subtitle = "1993-2012",
            caption = "Fuente: IEP")

library(qcc)
## Warning: package 'qcc' was built under R version 4.0.2
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
pareto.chart(table(IDH$X.2),cumperc = c(0,50,80,100))

##                
## Pareto chart analysis for table(IDH$X.2)
##                  Frequency  Cum.Freq. Percentage Cum.Percent.
##                   6.000000   6.000000  19.354839    19.354839
##   Amazonas        1.000000   7.000000   3.225806    22.580645
##   Ancash          1.000000   8.000000   3.225806    25.806452
##   Apurímac       1.000000   9.000000   3.225806    29.032258
##   Arequipa        1.000000  10.000000   3.225806    32.258065
##   Ayacucho        1.000000  11.000000   3.225806    35.483871
##   Cajamarca       1.000000  12.000000   3.225806    38.709677
##   Cusco           1.000000  13.000000   3.225806    41.935484
##   Huánuco        1.000000  14.000000   3.225806    45.161290
##   Huancavelica    1.000000  15.000000   3.225806    48.387097
##   Ica             1.000000  16.000000   3.225806    51.612903
##   Junín          1.000000  17.000000   3.225806    54.838710
##   La Libertad     1.000000  18.000000   3.225806    58.064516
##   Lambayeque      1.000000  19.000000   3.225806    61.290323
##   Lima            1.000000  20.000000   3.225806    64.516129
##   Loreto          1.000000  21.000000   3.225806    67.741935
##   Madre de Dios   1.000000  22.000000   3.225806    70.967742
##   Moquegua        1.000000  23.000000   3.225806    74.193548
##   Pasco           1.000000  24.000000   3.225806    77.419355
##   Perú           1.000000  25.000000   3.225806    80.645161
##   Piura           1.000000  26.000000   3.225806    83.870968
##   Puno            1.000000  27.000000   3.225806    87.096774
##   San Martin      1.000000  28.000000   3.225806    90.322581
##   Tacna           1.000000  29.000000   3.225806    93.548387
##   Tumbes          1.000000  30.000000   3.225806    96.774194
##   Ucayali         1.000000  31.000000   3.225806   100.000000
bar=ggplot(IDH,aes(y=as.numeric(X.2)))+ geom_boxplot() 
bar

bar + scale_y_discrete(limits = freqOrd$X.2)

library(DescTools)
## Warning: package 'DescTools' was built under R version 4.0.2
Mode(IDH$X.2)
## [1] 
## attr(,"freq")
## [1] 6
## 26 Levels:  Amazonas Ancash Apurímac Arequipa Ayacucho Cajamarca ... Ucayali
dataTable=table(IDH$X.2)
Herfindahl(dataTable)
## [1] 0.06347555
1/sum(prop.table(dataTable)**2)
## [1] 15.7541
Median(IDH$X.2)
## [1] NA
IQR(IDH$X.2)
## [1] 15
mad(as.numeric(IDH$X.2))
## [1] 11.8608