##Data
census <- 1:39
year.t <- 1959:1997
females.N <- c(44,47,46,44,46,
45,46,40,39,39,
42,39,41,40,33,
36,34,39,35,34,
38,36,37,41,39,
51,47,57,48,60,
65,74,69,65,57,
70,81,99,99)
lambda.i <- females.N[-1]/females.N[-length(females.N)]
lambda.i <- c(lambda.i,NA)
lambda_log <- log(lambda.i)
bear_N <- data.frame(census, year.t, females.N, lambda.i, lambda_log)
Population growth rate is…
Enter the population size for each year
females.N.1959 <-44
females.N.1960 <-47
Calculate the ratio of the 2 population sizes
lambda.59_60 <- females.N.1960/females.N.1959
Access the population sizes by using bracket notation rather than hard coding
# Access the data
females.N[1 ]
#> [1] 44
females.N[ 2]
#> [1] 47
# store in objects
females.N.1959 <- females.N[1 ]
females.N.1960 <- females.N[2 ]
# confirm the output
females.N.1960/females.N.1959
#> [1] 1.068182
Calculate lambda using bracket notation
lambda.59_60 <- females.N[2 ]/females.N[1 ]
The first year of data is 1959. What is lambda for 1958 to 1959? Null will occur because the year 1958 isnt in the data
#females.N[1]
#lambda.58_59 <- females.N[1]/females.N[ ]
TASK
To create vectors that contain the bear population data in order to carry out a lambda calculation with less hardcoding. this allows us to carry out the same equation for multiple datas instead of hand writing all the data in
females.N[2:3]
#> [1] 47 46
females.N[1:2]
#> [1] 44 47
females.N[2:3]/females.N[1:2]
#> [1] 1.0681818 0.9787234
This is similar t the previous code chunk, just using all of the data (no need to describe)
length(females.N)
#> [1] 39
females.N[2:39]/females.N[1:38]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK the first code line creates a variable (len) that contains the length of the female population (the census), the 2nd line calculates the lamda using vectors. instead of hard coding the number of censuses we can use len-1 in order to subtract from the total census (39) into 38.
len <- length(females.N)
females.N[2:len]/females.N[1:len-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK This code calculates all the lambdas for the bear population using 1 line. instead of assigning the length of the vector into a variable we directly code it into the formula (same with len-1 which will become length(females.N)-1 )
females.N[2:length(females.N)]/females.N[1:length(females.N)-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
Make a short vector to play with; first 10 years
females.N[1:10]
#> [1] 44 47 46 44 46 45 46 40 39 39
#> [1] 44 47 46 44 46 45 46 40 39 39
females.N[seq(1,10)]
#> [1] 44 47 46 44 46 45 46 40 39 39
#> [1] 44 47 46 44 46 45 46 40 39 39
females.Ntemp <- females.N[seq(1,10)]
Check - are there 10 numbers
females.Ntemp
#> [1] 44 47 46 44 46 45 46 40 39 39
TASK
Removing the first index of a vector
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
#> [1] 47 46 44 46 45 46 40 39 39
TASK How many lambdas can I calculate using the first 10 years of data? answer: 9
females.Ntemp[2:10]/females.Ntemp[1:9]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000
“Negative indexing” allows you to drop a specific element from a vector.
TASK Drop the the first element
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK Drop the second element
females.Ntemp[-2]
#> [1] 44 46 44 46 45 46 40 39 39
TASK
How do you drop the 10th element? Type in the code below.
females.Ntemp[-10]
#> [1] 44 47 46 44 46 45 46 40 39
TASK How do you access the last element? Do this in a general way without hard-coding.
females.Ntemp[length(females.Ntemp)]
#> [1] 39
TASK How do DROP the last element? Do this in a general way without hard-coding. By general, I mean in a way that if the length of the vector females.Ntemp changed the code would still drop the correct element.
females.Ntemp[-length(females.Ntemp)]
#> [1] 44 47 46 44 46 45 46 40 39
TASK Calculate the first 9 lambdas.
lambda.i <- females.Ntemp[-1]/females.Ntemp[-10]
Converting between these 2 code chunks would be a good test question : )
lambda.i <- females.Ntemp[-1]/females.Ntemp[-length(females.Ntemp)]
TASK
Below each bulleted line describe what the parts of the code do. Run the code to test it.
What does females.N[-1] do? removes the first index out of the females.N vector
What does females.N[-length(females.N)? removes the last index out of the females.N vector
TASK Calculate lambdas for all of the data
females.N[-1]
#> [1] 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39 51
#> [26] 47 57 48 60 65 74 69 65 57 70 81 99 99
females.N[-length(females.N)]
#> [1] 44 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39
#> [26] 51 47 57 48 60 65 74 69 65 57 70 81 99
lambda.i <- females.N[ -1]/females.N[-length(females.N) ]
TASK
List 3 functions that allow you to examine this dataframe.
1.head 2.tail 3.summary
TASK
plot(females.N ~ year.t, data = bear_N,
type = "b",
ylab = "Population index (females + cubs)",
xlab = "Year")
## How do we determine if a population is likely to go extinct?
to model the population dynamics we randomly pull population growth rates out of a hat
hat_of_lambdas <- bear_N$lambda.i
is.na(hat_of_lambdas)
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [37] FALSE FALSE TRUE
any(is.na(hat_of_lambdas) == TRUE)
#> [1] TRUE
Drop the NA
length(hat_of_lambdas)
#> [1] 39
hat_of_lambdas[39]
#> [1] NA
hat_of_lambdas[-39]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
hat_of_lambdas[-length(hat_of_lambdas)]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
na.omit(hat_of_lambdas)
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
#> attr(,"na.action")
#> [1] 39
#> attr(,"class")
#> [1] "omit"
hat_of_lambdas <- hat_of_lambdas[-length(hat_of_lambdas)]
hist(hat_of_lambdas)
in this chunk of code we pull random lambda from the hat and use the 2nd line of code (316) in order to save that random lambda we pulled into a object.
# pulls out a random lambda from the hat
sample(x = hat_of_lambdas, size = 1,
replace = TRUE) #replace = true is the same as turning on recycling
#> [1] 0.9714286
#save the lambda to an object/variable
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
the code below examins the top and bottom of the dataframe (head and tail) while the last line assigns the number of bears we start the simulation at
head(bear_N)
#> census year.t females.N lambda.i lambda_log
#> 1 1 1959 44 1.0681818 0.06595797
#> 2 2 1960 47 0.9787234 -0.02150621
#> 3 3 1961 46 0.9565217 -0.04445176
#> 4 4 1962 44 1.0454545 0.04445176
#> 5 5 1963 46 0.9782609 -0.02197891
#> 6 6 1964 45 1.0222222 0.02197891
tail(bear_N)
#> census year.t females.N lambda.i lambda_log
#> 34 34 1992 65 0.8769231 -0.1313360
#> 35 35 1993 57 1.2280702 0.2054440
#> 36 36 1994 70 1.1571429 0.1459539
#> 37 37 1995 81 1.2222222 0.2006707
#> 38 38 1996 99 1.0000000 0.0000000
#> 39 39 1997 99 NA NA
N.1997 <- 99 #last available population
calculates the number of bears after 1 year of simulation
1.22807*99
#> [1] 121.5789
lambda_rand.t*N.1997
#> [1] 96.525
N.1998 <- lambda_rand.t*N.1997
Calculates the simulated number of bears for the following years manually as if we are creating a table, somewhat like excel
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1998 <- lambda_rand.t*N.1997
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1999 <- lambda_rand.t*N.1998
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2000 <- lambda_rand.t*N.1999
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2001 <- lambda_rand.t*N.2000
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2002 <- lambda_rand.t*N.2001
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2003 <- lambda_rand.t*N.2002
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2004 <- lambda_rand.t*N.2003
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2005 <- lambda_rand.t*N.2004
puts the amounts of years into a vector and simulate the future generation bears, lastly we make a graph to represent our new simulation
year <- seq(1997, 2004)
N.rand <- c(N.1998,N.1999,N.2000,N.2001,N.2002,N.2003,N.2004,N.2005)
df.rand <- data.frame(N.rand, year)
plot(N.rand ~ year, data = df.rand, type = "b")
##For loops
we plot the simulation of a new year and move around where they are located on a graph which is then plotted.
#initial population
N.1997 <- 99
N.initial <- 99
# Explore xlimit arguments which sets where we start the population and ploting
plot(N.1997 ~ c(1997))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
#for loop hard way
N.current <- N.initial
# this is where the forloop would be located
t <- 1
# Grab a lambda
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
# determin new population size
N.t <- N.current*lambda_rand.t
# tell R which year the growth is
year.t <- 1997+t
# adds points to a plot
points(N.t ~ year.t)
# update N.current
N.current <- N.t
we plot 1 round of simulation for 50 years using a for loop
# create new plot
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
# creates for loop and set its conditions
for(t in 1:50)
{
# pick a random lambda out of the hat
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
# update the population size
N.t <- N.current*lambda_rand.t
# updates the year
year.t <- 1997+t
# adds a new point to the graph
points(N.t ~ year.t)
# updates the current population
N.current <- N.t
}
Goofy r plotting code/magic
par(mfrow = c(3,3), mar = c(1,1,1,1))
simulates the population growth for the next 50 years, but we can make grids with this due to Dr Brouwer’s magic abilities
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
for(t in 1:50){
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.t <- N.current*lambda_rand.t
year.t <- 1997+t
points(N.t ~ year.t)
N.current <- N.t
}