1 Generate Data frame

Suppose you are a data scientist, and you get a project at a start-up company, for instance Kopi Kenangan. Let’s say, you are asking to generate the collection of any possible data set from their daily sales. If I asking you: what kind of data set that you can generate?. Here, I assume you want to provide them the following data set:

  • Id : there are 5000 transactions.
  • Date: daily 5000 transactions, start from 2018/01/01.
  • Name: create 20 random cashier names (you can use names of your classmate including your self) to cover all 5000 transactions at Kopi Kenangan.
  • City: allocate this 5000 transactions to the biggest cities in Indonesia (with the same proportion). Here I assume,
    • Jakarta
    • Bogor
    • Depok
    • Tangerang
    • Bekasi
  • Outlet: allocate this 5000 transactions in five outlets. Here I assume,
    • Outlet 1
    • Outlet 2
    • Outlet 3
    • Outlet 4
    • Outlet 5
  • Menu: generate random sales of 5000 menu items at Kopi Kenangan every day. Here, I assume,
    • Cappucino
    • Es Kopi Susu
    • Hot Caramel Latte
    • Hot Chocolate
    • Hot Red Velvet Latte
    • Ice Americano
    • Ice Berry Coffe
    • Ice Cafe Latte
    • Ice Caramel Latte
    • Ice Coffee Avocado
    • Ice Coffee Lite
    • Ice Matcha Espresso
    • Ice Matcha Latte
    • Ice Red Velvet Latte
  • Price: generate random prices for each menu items above (min=18000, and max=45000)
  • Discount: generate random discounts for each menu items above (min=0.05, and max=0.12)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Joining, by = "menu"
## Joining, by = "menu"
##    id       date    name      city   outlet                 menu price discount
## 1   1 2018-01-01  jeffry    bekasi outlet 1    Ice Caramel Latte 31405     0.11
## 2   2 2018-01-01  ardifo tangerang outlet 3      Ice Coffee Lite 42015     0.06
## 3   3 2018-01-01   siana tangerang outlet 5        Hot Chocolate 25018     0.10
## 4   4 2018-01-01  fallen tangerang outlet 1        Ice Americano 30772     0.11
## 5   5 2018-01-01     ayu     bogor outlet 3        Ice Americano 30772     0.11
## 6   6 2018-01-01  nikita     bogor outlet 1      Ice Berry Coffe 39581     0.05
## 7   7 2018-01-01    lala   jakarta outlet 5 Hot Red Velvet Latte 36372     0.07
## 8   8 2018-01-02   angel     bogor outlet 5        Hot Chocolate 25018     0.10
## 9   9 2018-01-02  salomo tangerang outlet 1    Hot Caramel Latte 25675     0.07
## 10 10 2018-01-02 jocelyn     depok outlet 3        Hot Chocolate 25018     0.10
## 11 11 2018-01-02 jocelyn     depok outlet 4     Ice Matcha Latte 34704     0.11
## 12 12 2018-01-02  sherly     bogor outlet 4      Ice Coffee Lite 42015     0.06
## 13 13 2018-01-02   kefas   jakarta outlet 3 Ice Red Velvet Latte 41193     0.10
## 14 14 2018-01-03   irene     bogor outlet 4 Ice Red Velvet Latte 41193     0.10
## 15 15 2018-01-03  ardifo     bogor outlet 4     Ice Matcha Latte 34704     0.11
## 16 16 2018-01-03  sherly    bekasi outlet 2   Ice Coffee Avocado 37145     0.05
## 17 17 2018-01-04  salomo     bogor outlet 4 Hot Red Velvet Latte 36372     0.07
## 18 18 2018-01-04   irene   jakarta outlet 4    Hot Caramel Latte 25675     0.07
## 19 19 2018-01-04  fallen     depok outlet 4         Es Kopi Susu 33813     0.11
## 20 20 2018-01-04  fallen     depok outlet 3            Cappucino 37504     0.11

2 Extraction

In this section, your expecter to be able apply a very basic data frame manipulation called Extraction. Please cover the following tasks:

  • Extract all data set or transactions at Kopi Kenangan, in the specific city for instance Jakarta.
##     id       date    name    city   outlet                 menu price discount
## 1    7 2018-01-01    lala jakarta outlet 5 Hot Red Velvet Latte 36372     0.07
## 2   13 2018-01-02   kefas jakarta outlet 3 Ice Red Velvet Latte 41193     0.10
## 3   18 2018-01-04   irene jakarta outlet 4    Hot Caramel Latte 25675     0.07
## 4   23 2018-01-05   angel jakarta outlet 3        Ice Americano 30772     0.11
## 5   28 2018-01-06 vanessa jakarta outlet 4   Ice Coffee Avocado 37145     0.05
## 6   34 2018-01-07  nikita jakarta outlet 2      Ice Coffee Lite 42015     0.06
## 7   35 2018-01-07  sherly jakarta outlet 5   Ice Coffee Avocado 37145     0.05
## 8   40 2018-01-08    lala jakarta outlet 5 Ice Red Velvet Latte 41193     0.10
## 9   47 2018-01-09   angel jakarta outlet 2 Hot Red Velvet Latte 36372     0.07
## 10  49 2018-01-10   siana jakarta outlet 1    Hot Caramel Latte 25675     0.07
## 11  53 2018-01-12  taurin jakarta outlet 5      Ice Coffee Lite 42015     0.06
## 12  57 2018-01-13  jeffry jakarta outlet 1    Ice Caramel Latte 31405     0.11
## 13  59 2018-01-13   kefas jakarta outlet 1 Ice Red Velvet Latte 41193     0.10
## 14  62 2018-01-13   nessa jakarta outlet 4   Ice Coffee Avocado 37145     0.05
## 15  65 2018-01-14  taurin jakarta outlet 4         Es Kopi Susu 33813     0.11
## 16  67 2018-01-14   angel jakarta outlet 1    Hot Caramel Latte 25675     0.07
## 17  73 2018-01-15     ayu jakarta outlet 4     Ice Matcha Latte 34704     0.11
## 18  74 2018-01-16   kefas jakarta outlet 4  Ice Matcha Espresso 34215     0.07
## 19  90 2018-01-20  nikita jakarta outlet 5     Ice Matcha Latte 34704     0.11
## 20 116 2018-01-26 vanessa jakarta outlet 4            Cappucino 37504     0.11
  • Extract all data set or transactions at Kopi Kenangan, in the specific menu for instance Hot Chocolate.
##     id       date          name      city   outlet          menu price discount
## 1    3 2018-01-01         siana tangerang outlet 5 Hot Chocolate 25018      0.1
## 2    8 2018-01-02         angel     bogor outlet 5 Hot Chocolate 25018      0.1
## 3   10 2018-01-02       jocelyn     depok outlet 3 Hot Chocolate 25018      0.1
## 4   60 2018-01-13         nessa     depok outlet 3 Hot Chocolate 25018      0.1
## 5   89 2018-01-20        taurin     bogor outlet 4 Hot Chocolate 25018      0.1
## 6  119 2018-01-27        salomo   jakarta outlet 5 Hot Chocolate 25018      0.1
## 7  131 2018-01-29         putri    bekasi outlet 5 Hot Chocolate 25018      0.1
## 8  199 2018-02-10        jeffry     depok outlet 4 Hot Chocolate 25018      0.1
## 9  205 2018-02-11         kefas     bogor outlet 2 Hot Chocolate 25018      0.1
## 10 214 2018-02-12         siana tangerang outlet 1 Hot Chocolate 25018      0.1
## 11 228 2018-02-14           ayu   jakarta outlet 3 Hot Chocolate 25018      0.1
## 12 246 2018-02-18        salomo    bekasi outlet 3 Hot Chocolate 25018      0.1
## 13 305 2018-02-28       jocelyn   jakarta outlet 3 Hot Chocolate 25018      0.1
## 14 311 2018-03-01        julian     depok outlet 4 Hot Chocolate 25018      0.1
## 15 312 2018-03-01 Bakti Siregar    bekasi outlet 1 Hot Chocolate 25018      0.1
## 16 342 2018-03-06          lala tangerang outlet 3 Hot Chocolate 25018      0.1
## 17 375 2018-03-13           ayu   jakarta outlet 2 Hot Chocolate 25018      0.1
## 18 384 2018-03-16        salomo    bekasi outlet 4 Hot Chocolate 25018      0.1
## 19 391 2018-03-17 Bakti Siregar    bekasi outlet 5 Hot Chocolate 25018      0.1
## 20 392 2018-03-17         kefas    bekasi outlet 5 Hot Chocolate 25018      0.1
  • Extract all data set or transactions at Kopi Kenangan, in the specific cashier names for instance Bakti Siregar.
##     id       date          name      city   outlet                menu price
## 1   32 2018-01-07 Bakti Siregar    bekasi outlet 4        Es Kopi Susu 33813
## 2   79 2018-01-17 Bakti Siregar    bekasi outlet 2           Cappucino 37504
## 3   99 2018-01-22 Bakti Siregar     depok outlet 2 Ice Matcha Espresso 34215
## 4  168 2018-02-04 Bakti Siregar   jakarta outlet 1     Ice Coffee Lite 42015
## 5  195 2018-02-09 Bakti Siregar     bogor outlet 3     Ice Berry Coffe 39581
## 6  220 2018-02-13 Bakti Siregar tangerang outlet 5    Ice Matcha Latte 34704
## 7  236 2018-02-15 Bakti Siregar     bogor outlet 3       Ice Americano 30772
## 8  244 2018-02-18 Bakti Siregar     bogor outlet 2   Ice Caramel Latte 31405
## 9  261 2018-02-22 Bakti Siregar     depok outlet 4   Hot Caramel Latte 25675
## 10 265 2018-02-22 Bakti Siregar    bekasi outlet 3      Ice Cafe Latte 35884
## 11 269 2018-02-23 Bakti Siregar    bekasi outlet 1 Ice Matcha Espresso 34215
## 12 277 2018-02-24 Bakti Siregar     bogor outlet 1  Ice Coffee Avocado 37145
## 13 285 2018-02-25 Bakti Siregar   jakarta outlet 4           Cappucino 37504
## 14 289 2018-02-26 Bakti Siregar     depok outlet 2        Es Kopi Susu 33813
## 15 302 2018-02-28 Bakti Siregar tangerang outlet 1           Cappucino 37504
## 16 312 2018-03-01 Bakti Siregar    bekasi outlet 1       Hot Chocolate 25018
## 17 355 2018-03-09 Bakti Siregar   jakarta outlet 5      Ice Cafe Latte 35884
## 18 371 2018-03-13 Bakti Siregar     depok outlet 2   Ice Caramel Latte 31405
## 19 373 2018-03-13 Bakti Siregar tangerang outlet 3 Ice Matcha Espresso 34215
## 20 391 2018-03-17 Bakti Siregar    bekasi outlet 5       Hot Chocolate 25018
##    discount
## 1      0.11
## 2      0.11
## 3      0.07
## 4      0.06
## 5      0.05
## 6      0.11
## 7      0.11
## 8      0.11
## 9      0.07
## 10     0.07
## 11     0.07
## 12     0.05
## 13     0.11
## 14     0.11
## 15     0.11
## 16     0.10
## 17     0.07
## 18     0.11
## 19     0.07
## 20     0.10
  • Extract all data set or transactions at Kopi Kenangan, in the specific price for instance >=40000.
##     id       date    name      city   outlet                 menu price
## 1    2 2018-01-01  ardifo tangerang outlet 3      Ice Coffee Lite 42015
## 2   12 2018-01-02  sherly     bogor outlet 4      Ice Coffee Lite 42015
## 3   13 2018-01-02   kefas   jakarta outlet 3 Ice Red Velvet Latte 41193
## 4   14 2018-01-03   irene     bogor outlet 4 Ice Red Velvet Latte 41193
## 5   21 2018-01-05    lala     bogor outlet 1 Ice Red Velvet Latte 41193
## 6   24 2018-01-06  fallen tangerang outlet 2 Ice Red Velvet Latte 41193
## 7   34 2018-01-07  nikita   jakarta outlet 2      Ice Coffee Lite 42015
## 8   37 2018-01-08   angel tangerang outlet 4 Ice Red Velvet Latte 41193
## 9   40 2018-01-08    lala   jakarta outlet 5 Ice Red Velvet Latte 41193
## 10  53 2018-01-12  taurin   jakarta outlet 5      Ice Coffee Lite 42015
## 11  54 2018-01-12   kefas    bekasi outlet 1      Ice Coffee Lite 42015
## 12  55 2018-01-12     ayu tangerang outlet 3      Ice Coffee Lite 42015
## 13  59 2018-01-13   kefas   jakarta outlet 1 Ice Red Velvet Latte 41193
## 14  64 2018-01-14  jeffry     depok outlet 4 Ice Red Velvet Latte 41193
## 15  66 2018-01-14   irene tangerang outlet 3 Ice Red Velvet Latte 41193
## 16  70 2018-01-15   irene     depok outlet 1 Ice Red Velvet Latte 41193
## 17  91 2018-01-20 vanessa tangerang outlet 3 Ice Red Velvet Latte 41193
## 18  95 2018-01-21  salomo     bogor outlet 1      Ice Coffee Lite 42015
## 19 100 2018-01-23  nikita tangerang outlet 2 Ice Red Velvet Latte 41193
## 20 103 2018-01-23  jeffry    bekasi outlet 1      Ice Coffee Lite 42015
##    discount
## 1      0.06
## 2      0.06
## 3      0.10
## 4      0.10
## 5      0.10
## 6      0.10
## 7      0.06
## 8      0.10
## 9      0.10
## 10     0.06
## 11     0.06
## 12     0.06
## 13     0.10
## 14     0.10
## 15     0.10
## 16     0.10
## 17     0.10
## 18     0.06
## 19     0.10
## 20     0.06
  • Add a new variable, call Total_Price to your data frame (data frame that you have done above)
## Joining, by = "menu"
##    id       date    name      city   outlet                 menu price discount
## 1   1 2018-01-01  jeffry    bekasi outlet 1    Ice Caramel Latte 31405     0.11
## 2   2 2018-01-01  ardifo tangerang outlet 3      Ice Coffee Lite 42015     0.06
## 3   3 2018-01-01   siana tangerang outlet 5        Hot Chocolate 25018     0.10
## 4   4 2018-01-01  fallen tangerang outlet 1        Ice Americano 30772     0.11
## 5   5 2018-01-01     ayu     bogor outlet 3        Ice Americano 30772     0.11
## 6   6 2018-01-01  nikita     bogor outlet 1      Ice Berry Coffe 39581     0.05
## 7   7 2018-01-01    lala   jakarta outlet 5 Hot Red Velvet Latte 36372     0.07
## 8   8 2018-01-02   angel     bogor outlet 5        Hot Chocolate 25018     0.10
## 9   9 2018-01-02  salomo tangerang outlet 1    Hot Caramel Latte 25675     0.07
## 10 10 2018-01-02 jocelyn     depok outlet 3        Hot Chocolate 25018     0.10
## 11 11 2018-01-02 jocelyn     depok outlet 4     Ice Matcha Latte 34704     0.11
## 12 12 2018-01-02  sherly     bogor outlet 4      Ice Coffee Lite 42015     0.06
## 13 13 2018-01-02   kefas   jakarta outlet 3 Ice Red Velvet Latte 41193     0.10
## 14 14 2018-01-03   irene     bogor outlet 4 Ice Red Velvet Latte 41193     0.10
## 15 15 2018-01-03  ardifo     bogor outlet 4     Ice Matcha Latte 34704     0.11
## 16 16 2018-01-03  sherly    bekasi outlet 2   Ice Coffee Avocado 37145     0.05
## 17 17 2018-01-04  salomo     bogor outlet 4 Hot Red Velvet Latte 36372     0.07
## 18 18 2018-01-04   irene   jakarta outlet 4    Hot Caramel Latte 25675     0.07
## 19 19 2018-01-04  fallen     depok outlet 4         Es Kopi Susu 33813     0.11
## 20 20 2018-01-04  fallen     depok outlet 3            Cappucino 37504     0.11
## 21 21 2018-01-05    lala     bogor outlet 1 Ice Red Velvet Latte 41193     0.10
## 22 22 2018-01-05  fallen tangerang outlet 5         Es Kopi Susu 33813     0.11
## 23 23 2018-01-05   angel   jakarta outlet 3        Ice Americano 30772     0.11
## 24 24 2018-01-06  fallen tangerang outlet 2 Ice Red Velvet Latte 41193     0.10
## 25 25 2018-01-06 vanessa    bekasi outlet 1     Ice Matcha Latte 34704     0.11
## 26 26 2018-01-06    difo     bogor outlet 3      Ice Berry Coffe 39581     0.05
## 27 27 2018-01-06  taurin     bogor outlet 4    Ice Caramel Latte 31405     0.11
## 28 28 2018-01-06 vanessa   jakarta outlet 4   Ice Coffee Avocado 37145     0.05
## 29 29 2018-01-07 jocelyn tangerang outlet 2    Ice Caramel Latte 31405     0.11
## 30 30 2018-01-07   irene     depok outlet 5      Ice Berry Coffe 39581     0.05
##    Total_Price
## 1        27950
## 2        39494
## 3        22516
## 4        27387
## 5        27387
## 6        37602
## 7        33826
## 8        22516
## 9        23878
## 10       22516
## 11       30887
## 12       39494
## 13       37074
## 14       37074
## 15       30887
## 16       35288
## 17       33826
## 18       23878
## 19       30094
## 20       33379
## 21       37074
## 22       30094
## 23       27387
## 24       37074
## 25       30887
## 26       37602
## 27       27950
## 28       35288
## 29       27950
## 30       37602
  • Add a new variable, call Category_Price to your data frame (data frame that you have done above), Here, I assume: “expensive”, “so-so”, and “cheap”.
##    id       date    name      city   outlet                 menu price discount
## 1   1 2018-01-01  jeffry    bekasi outlet 1    Ice Caramel Latte 31405     0.11
## 2   2 2018-01-01  ardifo tangerang outlet 3      Ice Coffee Lite 42015     0.06
## 3   3 2018-01-01   siana tangerang outlet 5        Hot Chocolate 25018     0.10
## 4   4 2018-01-01  fallen tangerang outlet 1        Ice Americano 30772     0.11
## 5   5 2018-01-01     ayu     bogor outlet 3        Ice Americano 30772     0.11
## 6   6 2018-01-01  nikita     bogor outlet 1      Ice Berry Coffe 39581     0.05
## 7   7 2018-01-01    lala   jakarta outlet 5 Hot Red Velvet Latte 36372     0.07
## 8   8 2018-01-02   angel     bogor outlet 5        Hot Chocolate 25018     0.10
## 9   9 2018-01-02  salomo tangerang outlet 1    Hot Caramel Latte 25675     0.07
## 10 10 2018-01-02 jocelyn     depok outlet 3        Hot Chocolate 25018     0.10
## 11 11 2018-01-02 jocelyn     depok outlet 4     Ice Matcha Latte 34704     0.11
## 12 12 2018-01-02  sherly     bogor outlet 4      Ice Coffee Lite 42015     0.06
## 13 13 2018-01-02   kefas   jakarta outlet 3 Ice Red Velvet Latte 41193     0.10
## 14 14 2018-01-03   irene     bogor outlet 4 Ice Red Velvet Latte 41193     0.10
## 15 15 2018-01-03  ardifo     bogor outlet 4     Ice Matcha Latte 34704     0.11
## 16 16 2018-01-03  sherly    bekasi outlet 2   Ice Coffee Avocado 37145     0.05
## 17 17 2018-01-04  salomo     bogor outlet 4 Hot Red Velvet Latte 36372     0.07
## 18 18 2018-01-04   irene   jakarta outlet 4    Hot Caramel Latte 25675     0.07
## 19 19 2018-01-04  fallen     depok outlet 4         Es Kopi Susu 33813     0.11
## 20 20 2018-01-04  fallen     depok outlet 3            Cappucino 37504     0.11
##    Total_Price Category_Price
## 1        27950          so-so
## 2        39494      expensive
## 3        22516          so-so
## 4        27387          so-so
## 5        27387          so-so
## 6        37602      expensive
## 7        33826      expensive
## 8        22516          so-so
## 9        23878          so-so
## 10       22516          so-so
## 11       30887          so-so
## 12       39494      expensive
## 13       37074      expensive
## 14       37074      expensive
## 15       30887          so-so
## 16       35288      expensive
## 17       33826      expensive
## 18       23878          so-so
## 19       30094          so-so
## 20       33379      expensive

3 Renames Data Frame

Please rename all variables of your data frame (data frame that you have done above) in your language.

## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.3     v stringr 1.4.0
## v tidyr   1.1.2     v forcats 0.5.0
## v readr   1.3.1
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
##    Nomor_Transaksi    Tanggal    Nama      Kota   Outlet                 Menu
## 1                1 2018-01-01  jeffry    bekasi outlet 1    Ice Caramel Latte
## 2                2 2018-01-01  ardifo tangerang outlet 3      Ice Coffee Lite
## 3                3 2018-01-01   siana tangerang outlet 5        Hot Chocolate
## 4                4 2018-01-01  fallen tangerang outlet 1        Ice Americano
## 5                5 2018-01-01     ayu     bogor outlet 3        Ice Americano
## 6                6 2018-01-01  nikita     bogor outlet 1      Ice Berry Coffe
## 7                7 2018-01-01    lala   jakarta outlet 5 Hot Red Velvet Latte
## 8                8 2018-01-02   angel     bogor outlet 5        Hot Chocolate
## 9                9 2018-01-02  salomo tangerang outlet 1    Hot Caramel Latte
## 10              10 2018-01-02 jocelyn     depok outlet 3        Hot Chocolate
## 11              11 2018-01-02 jocelyn     depok outlet 4     Ice Matcha Latte
## 12              12 2018-01-02  sherly     bogor outlet 4      Ice Coffee Lite
## 13              13 2018-01-02   kefas   jakarta outlet 3 Ice Red Velvet Latte
## 14              14 2018-01-03   irene     bogor outlet 4 Ice Red Velvet Latte
## 15              15 2018-01-03  ardifo     bogor outlet 4     Ice Matcha Latte
## 16              16 2018-01-03  sherly    bekasi outlet 2   Ice Coffee Avocado
## 17              17 2018-01-04  salomo     bogor outlet 4 Hot Red Velvet Latte
## 18              18 2018-01-04   irene   jakarta outlet 4    Hot Caramel Latte
## 19              19 2018-01-04  fallen     depok outlet 4         Es Kopi Susu
## 20              20 2018-01-04  fallen     depok outlet 3            Cappucino
##    Harga Diskon Harga_Total Kategori_Harga
## 1  31405   0.11       27950          so-so
## 2  42015   0.06       39494      expensive
## 3  25018   0.10       22516          so-so
## 4  30772   0.11       27387          so-so
## 5  30772   0.11       27387          so-so
## 6  39581   0.05       37602      expensive
## 7  36372   0.07       33826      expensive
## 8  25018   0.10       22516          so-so
## 9  25675   0.07       23878          so-so
## 10 25018   0.10       22516          so-so
## 11 34704   0.11       30887          so-so
## 12 42015   0.06       39494      expensive
## 13 41193   0.10       37074      expensive
## 14 41193   0.10       37074      expensive
## 15 34704   0.11       30887          so-so
## 16 37145   0.05       35288      expensive
## 17 36372   0.07       33826      expensive
## 18 25675   0.07       23878          so-so
## 19 33813   0.11       30094          so-so
## 20 37504   0.11       33379      expensive

4 Case Study

According to your data frame, pleas provide me the following tasks:

  • Find out the frequency of sales of which menu items are best-selling in Kopi Kenangan!
##                    Var1 Freq
## 1     Ice Caramel Latte  349
## 2             Cappucino  366
## 3          Es Kopi Susu  332
## 4     Hot Caramel Latte  333
## 5         Hot Chocolate  365
## 6  Hot Red Velvet Latte  366
## 7         Ice Americano  355
## 8       Ice Berry Coffe  395
## 9        Ice Cafe Latte  351
## 10   Ice Coffee Avocado  348
## 11      Ice Coffee Lite  342
## 12  Ice Matcha Espresso  348
## 13     Ice Matcha Latte  354
## 14 Ice Red Velvet Latte  396
##                    Var1 Freq
## 14 Ice Red Velvet Latte  396

atau

##                   Var1 Freq
## 1 Ice Red Velvet Latte  396

* Find out which city got the most sales!

##        city        x
## 1    bekasi 34620816
## 2     bogor 34968282
## 3     depok 34773502
## 4   jakarta 34730630
## 5 tangerang 34766885
##    city        x
## 1 bogor 34968282

atau

##    city        x
## 2 bogor 34968282

* Find out which city has the most discounted sales!

##        city        x
## 1    bekasi 31725372
## 2     bogor 32062208
## 3     depok 31806861
## 4   jakarta 31813248
## 5 tangerang 31869394
##    city        x
## 1 bogor 32062208

atau

##    city        x
## 2 bogor 32062208

* what year were the most sales?

##   Var1 Freq
## 1 2018 1847
## 2 2019 1814
## 3 2020 1339
##   Var1 Freq
## 1 2018 1847

atau

##   Var1 Freq
## 1 2018 1847