Regresión lineal simple
Masa corporal
Importar
visualizar
- Gráfico de correlación, gráfico de pares
## peso edad grasas
## 1 84 46 354
## 2 73 20 190
## 3 65 52 405
## 4 70 30 263
## 5 76 57 451
## 6 69 25 302
Modelar
Grado de correlación lineal
- Matriz de coeficientes de correlación
## peso edad grasas
## peso 1.0000000 0.2400133 0.2652935
## edad 0.2400133 1.0000000 0.8373534
## grasas 0.2652935 0.8373534 1.0000000
Cálculo y representación de la recta de mínimos cuadrados
##
## Call:
## lm(formula = grasas ~ edad, data = grasas)
##
## Residuals:
## Min 1Q Median 3Q Max
## -63.478 -26.816 -3.854 28.315 90.881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.5751 29.6376 3.461 0.00212 **
## edad 5.3207 0.7243 7.346 1.79e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 43.46 on 23 degrees of freedom
## Multiple R-squared: 0.7012, Adjusted R-squared: 0.6882
## F-statistic: 53.96 on 1 and 23 DF, p-value: 1.794e-07
- Entonces la recta de m´nimos cuadrados seria la siguente:
\[ y = 102.57.51 + 5.3207 x\]
Representación gráfica de la recta
Modelación de valores
## 1 2 3 4 5 6 7 8
## 262.1954 267.5161 272.8368 278.1575 283.4781 288.7988 294.1195 299.4402
## 9 10 11 12 13 14 15 16
## 304.7608 310.0815 315.4022 320.7229 326.0435 331.3642 336.6849 342.0056
## 17 18 19 20 21
## 347.3263 352.6469 357.9676 363.2883 368.6090
Conclusión
En este ejercicio se vio como hacer un análisis de la relación que tiene el peso, la edad y la grasa en una persona. Vimos que estas tres cosas están relacionadas. Aprendimos a hacer un gráfico de correlación, este nos ayuda a ver que tan relacionadas están las variables, vimos que son directamente proporcionales.