Importing Data

library(psych)
Depression <- read.csv("/Users/Lorraine/Desktop/depression(1).csv")
View(Depression)

Checking for outliers

summary(Depression$v01)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   4.000   3.716   4.000   4.000       7
summary(Depression$v02)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   3.000   4.000   3.504   4.000   4.000      12
summary(Depression$v03)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   3.000   4.000   3.386   4.000   4.000       9
summary(Depression$v04)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   2.000   1.809   2.000   4.000       7
summary(Depression$v05)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   4.000   3.763   4.000   4.000      10
summary(Depression$v06)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   4.000   3.836   4.000   4.000       7
summary(Depression$v07)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   1.000   1.531   2.000   4.000       9
summary(Depression$v08)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   3.000   4.000   3.706   4.000   4.000       7
summary(Depression$v09)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   4.000   3.885   4.000   4.000      10
summary(Depression$v10)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1.00    3.00    4.00    3.53    4.00    4.00       8
summary(Depression$v11)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   4.000   4.000   3.779   4.000   4.000      11
summary(Depression$v12)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   2.000   2.000   2.235   3.000   4.000      12
summary(Depression$v13)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   3.000   3.000   3.253   4.000   4.000       7
summary(Depression$v14)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   1.000   2.000   2.085   3.000   4.000       9

There is no outliers.

reverse code

col <- c("v04","v07","v12","v14")
Depression[ ,col] <- 5 - Depression[ ,col]

Checking for Missing Data

sum(is.na(Depression)) #Total cells
## [1] 125
sum(!complete.cases(Depression)) # Total rows
## [1] 37

Computing total score

Depression$DepressionScore <- rowMeans (Depression[ ,1:14], na.rm = TRUE)

Descriotive Statistics

describe(Depression, na.rm = TRUE)
##                 vars    n  mean   sd median trimmed  mad   min max range
## v01                1 1573  3.72 0.57   4.00    3.83 0.00  1.00   4  3.00
## v02                2 1568  3.50 0.81   4.00    3.68 0.00  1.00   4  3.00
## v03                3 1571  3.39 0.82   4.00    3.54 0.00  1.00   4  3.00
## v04                4 1573  3.19 0.77   3.00    3.27 1.48  1.00   4  3.00
## v05                5 1570  3.76 0.53   4.00    3.88 0.00  1.00   4  3.00
## v06                6 1573  3.84 0.45   4.00    3.95 0.00  1.00   4  3.00
## v07                7 1571  3.47 0.71   4.00    3.60 0.00  1.00   4  3.00
## v08                8 1573  3.71 0.54   4.00    3.80 0.00  1.00   4  3.00
## v09                9 1570  3.89 0.39   4.00    4.00 0.00  1.00   4  3.00
## v10               10 1572  3.53 0.69   4.00    3.65 0.00  1.00   4  3.00
## v11               11 1569  3.78 0.58   4.00    3.93 0.00  1.00   4  3.00
## v12               12 1568  2.76 0.93   3.00    2.83 1.48  1.00   4  3.00
## v13               13 1573  3.25 0.71   3.00    3.35 0.00  1.00   4  3.00
## v14               14 1571  2.92 0.94   3.00    3.01 1.48  1.00   4  3.00
## sex               15 1580  1.27 0.44   1.00    1.21 0.00  1.00   2  1.00
## age               16 1580 61.27 5.54  61.00   61.04 4.45 44.00  85 41.00
## DepressionScore   17 1574  3.48 0.43   3.57    3.53 0.32  1.21   4  2.79
##                  skew kurtosis   se
## v01             -2.38     6.55 0.01
## v02             -1.65     1.92 0.02
## v03             -1.33     1.21 0.02
## v04             -0.69     0.04 0.02
## v05             -2.58     7.71 0.01
## v06             -3.27    12.64 0.01
## v07             -1.25     1.15 0.02
## v08             -2.02     4.89 0.01
## v09             -4.21    21.92 0.01
## v10             -1.61     2.66 0.02
## v11             -3.10    10.05 0.01
## v12             -0.28    -0.80 0.02
## v13             -0.91     1.11 0.02
## v14             -0.51    -0.67 0.02
## sex              1.04    -0.91 0.01
## age              0.48     0.68 0.14
## DepressionScore -1.39     2.64 0.01

Computing coefficient alpha

alpha(Depression[ ,1:14])
## 
## Reliability analysis   
## Call: alpha(x = Depression[, 1:14])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.87      0.88    0.89      0.34 7.1 0.0045  3.5 0.43     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.88 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## v01      0.86      0.86    0.87      0.32 6.2   0.0050 0.0098  0.33
## v02      0.86      0.87    0.88      0.34 6.6   0.0048 0.0113  0.34
## v03      0.86      0.87    0.88      0.34 6.7   0.0048 0.0111  0.34
## v04      0.86      0.87    0.87      0.33 6.4   0.0050 0.0101  0.33
## v05      0.86      0.87    0.88      0.33 6.5   0.0048 0.0108  0.34
## v06      0.87      0.87    0.88      0.35 6.9   0.0046 0.0102  0.35
## v07      0.86      0.87    0.88      0.33 6.5   0.0049 0.0105  0.34
## v08      0.86      0.86    0.87      0.33 6.4   0.0049 0.0102  0.33
## v09      0.87      0.88    0.88      0.35 7.1   0.0046 0.0088  0.35
## v10      0.86      0.86    0.87      0.33 6.4   0.0050 0.0110  0.33
## v11      0.87      0.87    0.88      0.35 6.8   0.0047 0.0109  0.35
## v12      0.86      0.87    0.87      0.33 6.4   0.0051 0.0099  0.33
## v13      0.86      0.87    0.87      0.33 6.4   0.0050 0.0103  0.33
## v14      0.87      0.87    0.88      0.34 6.7   0.0048 0.0099  0.34
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean   sd
## v01 1573  0.70  0.72  0.71   0.64  3.7 0.57
## v02 1568  0.63  0.62  0.58   0.54  3.5 0.81
## v03 1571  0.62  0.60  0.55   0.53  3.4 0.82
## v04 1573  0.68  0.66  0.64   0.60  3.2 0.77
## v05 1570  0.59  0.64  0.60   0.53  3.8 0.53
## v06 1573  0.46  0.52  0.47   0.40  3.8 0.45
## v07 1571  0.65  0.64  0.61   0.57  3.5 0.71
## v08 1573  0.64  0.68  0.66   0.58  3.7 0.54
## v09 1570  0.40  0.47  0.41   0.34  3.9 0.39
## v10 1572  0.69  0.69  0.66   0.62  3.5 0.69
## v11 1569  0.52  0.54  0.48   0.44  3.8 0.58
## v12 1568  0.71  0.67  0.64   0.62  2.8 0.93
## v13 1573  0.68  0.66  0.63   0.61  3.3 0.71
## v14 1571  0.63  0.58  0.53   0.52  2.9 0.94
## 
## Non missing response frequency for each item
##        1    2    3    4 miss
## v01 0.02 0.02 0.20 0.76 0.00
## v02 0.04 0.07 0.21 0.67 0.01
## v03 0.05 0.08 0.32 0.56 0.01
## v04 0.03 0.14 0.45 0.38 0.00
## v05 0.01 0.02 0.17 0.80 0.01
## v06 0.01 0.01 0.12 0.86 0.00
## v07 0.02 0.08 0.33 0.58 0.01
## v08 0.01 0.02 0.24 0.74 0.00
## v09 0.01 0.00 0.09 0.90 0.01
## v10 0.03 0.04 0.31 0.62 0.01
## v11 0.02 0.02 0.12 0.84 0.01
## v12 0.10 0.27 0.39 0.24 0.01
## v13 0.03 0.07 0.52 0.38 0.00
## v14 0.09 0.21 0.39 0.31 0.01

α = 0.87

Computing split half reliability

splitHalf(Depression[ ,1:14]) 
## Split half reliabilities  
## Call: splitHalf(r = Depression[, 1:14])
## 
## Maximum split half reliability (lambda 4) =  0.92
## Guttman lambda 6                          =  0.89
## Average split half reliability            =  0.88
## Guttman lambda 3 (alpha)                  =  0.88
## Minimum split half reliability  (beta)    =  0.77
## Average interitem r =  0.34  with median =  0.34

Average split half reliability = 0.88

Question 1

Coefficient alpha is more appropriate in this case becuase it is the average of all possible split half reliabilities. Although the split half reliability is slightly larger than the coefficient alpha by 0.01, I would choose coefficient alpha for the reliability report.

Sex Difference

Depression$sex <- factor(Depression$sex, levels = c("1","2"), labels = c("Male","Female"))
Male <- subset(Depression, `sex` == "Male")
Female <- subset(Depression, `sex` == "Female")
alpha(Male[ ,1:14]) #α = 0.87
## 
## Reliability analysis   
## Call: alpha(x = Male[, 1:14])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.87      0.88    0.88      0.33   7 0.0054  3.5 0.42     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.88 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## v01      0.86      0.86    0.87      0.32 6.2   0.0059 0.0100  0.33
## v02      0.86      0.87    0.88      0.34 6.6   0.0057 0.0112  0.34
## v03      0.86      0.87    0.88      0.34 6.6   0.0058 0.0110  0.34
## v04      0.86      0.86    0.87      0.33 6.3   0.0059 0.0097  0.33
## v05      0.86      0.87    0.87      0.33 6.4   0.0057 0.0108  0.34
## v06      0.87      0.87    0.88      0.34 6.8   0.0055 0.0100  0.34
## v07      0.86      0.87    0.87      0.33 6.4   0.0058 0.0104  0.33
## v08      0.86      0.86    0.87      0.33 6.3   0.0058 0.0102  0.33
## v09      0.87      0.88    0.88      0.35 7.0   0.0055 0.0086  0.34
## v10      0.86      0.86    0.87      0.33 6.3   0.0059 0.0110  0.33
## v11      0.86      0.87    0.88      0.34 6.8   0.0056 0.0106  0.34
## v12      0.86      0.86    0.87      0.33 6.4   0.0060 0.0098  0.33
## v13      0.86      0.86    0.87      0.33 6.4   0.0060 0.0103  0.33
## v14      0.86      0.87    0.88      0.34 6.7   0.0056 0.0098  0.34
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean   sd
## v01 1150  0.68  0.71  0.69   0.63  3.8 0.54
## v02 1147  0.61  0.60  0.56   0.51  3.5 0.82
## v03 1150  0.63  0.60  0.55   0.53  3.4 0.81
## v04 1150  0.69  0.67  0.65   0.61  3.2 0.78
## v05 1148  0.60  0.64  0.61   0.54  3.8 0.49
## v06 1151  0.46  0.52  0.46   0.39  3.8 0.44
## v07 1148  0.65  0.64  0.61   0.57  3.5 0.70
## v08 1150  0.64  0.69  0.67   0.59  3.8 0.51
## v09 1148  0.40  0.47  0.41   0.34  3.9 0.39
## v10 1149  0.68  0.68  0.65   0.61  3.6 0.70
## v11 1147  0.52  0.53  0.47   0.43  3.8 0.60
## v12 1145  0.71  0.67  0.64   0.62  2.8 0.93
## v13 1150  0.69  0.66  0.64   0.62  3.3 0.72
## v14 1148  0.63  0.57  0.53   0.51  2.9 0.95
## 
## Non missing response frequency for each item
##        1    2    3    4 miss
## v01 0.01 0.02 0.18 0.79 0.01
## v02 0.05 0.07 0.21 0.67 0.01
## v03 0.04 0.07 0.33 0.56 0.01
## v04 0.03 0.14 0.44 0.40 0.01
## v05 0.01 0.01 0.15 0.83 0.01
## v06 0.01 0.01 0.13 0.85 0.00
## v07 0.02 0.07 0.31 0.60 0.01
## v08 0.01 0.01 0.19 0.79 0.01
## v09 0.01 0.01 0.09 0.90 0.01
## v10 0.03 0.04 0.29 0.64 0.01
## v11 0.02 0.02 0.11 0.84 0.01
## v12 0.10 0.26 0.39 0.25 0.01
## v13 0.03 0.07 0.51 0.39 0.01
## v14 0.09 0.21 0.38 0.31 0.01
alpha(Female[ ,1:14]) #α = 0.88
## 
## Reliability analysis   
## Call: alpha(x = Female[, 1:14])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.88      0.88     0.9      0.35 7.4 0.0084  3.4 0.44     0.35
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.88 0.89 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## v01      0.86      0.87    0.88      0.33 6.4   0.0094 0.012  0.33
## v02      0.86      0.87    0.89      0.34 6.7   0.0093 0.013  0.34
## v03      0.87      0.88    0.89      0.35 7.0   0.0088 0.013  0.35
## v04      0.87      0.87    0.89      0.34 6.8   0.0091 0.013  0.35
## v05      0.87      0.87    0.89      0.35 6.8   0.0088 0.013  0.35
## v06      0.87      0.88    0.89      0.36 7.2   0.0087 0.012  0.35
## v07      0.87      0.87    0.89      0.34 6.8   0.0091 0.013  0.35
## v08      0.87      0.87    0.89      0.34 6.7   0.0090 0.012  0.35
## v09      0.88      0.88    0.89      0.36 7.4   0.0086 0.011  0.36
## v10      0.86      0.87    0.89      0.34 6.6   0.0093 0.013  0.33
## v11      0.87      0.88    0.89      0.35 7.0   0.0088 0.013  0.35
## v12      0.87      0.87    0.89      0.34 6.7   0.0093 0.012  0.35
## v13      0.87      0.87    0.89      0.34 6.8   0.0092 0.012  0.35
## v14      0.87      0.87    0.89      0.35 7.0   0.0089 0.012  0.35
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean   sd
## v01 423  0.74  0.76  0.75   0.68  3.6 0.65
## v02 421  0.69  0.68  0.65   0.61  3.5 0.80
## v03 421  0.61  0.58  0.54   0.51  3.4 0.86
## v04 423  0.65  0.65  0.61   0.57  3.1 0.74
## v05 422  0.59  0.63  0.59   0.52  3.7 0.61
## v06 422  0.48  0.54  0.49   0.42  3.9 0.47
## v07 423  0.64  0.63  0.60   0.56  3.4 0.73
## v08 423  0.64  0.66  0.64   0.57  3.6 0.59
## v09 422  0.41  0.47  0.42   0.36  3.9 0.36
## v10 423  0.71  0.70  0.68   0.64  3.5 0.68
## v11 422  0.55  0.58  0.53   0.48  3.8 0.52
## v12 423  0.71  0.66  0.64   0.61  2.7 0.93
## v13 423  0.66  0.64  0.61   0.59  3.2 0.71
## v14 423  0.64  0.59  0.56   0.54  2.9 0.94
## 
## Non missing response frequency for each item
##        1    2    3    4 miss
## v01 0.02 0.02 0.27 0.68 0.00
## v02 0.04 0.07 0.22 0.67 0.01
## v03 0.06 0.08 0.31 0.55 0.01
## v04 0.02 0.14 0.50 0.34 0.00
## v05 0.02 0.03 0.22 0.73 0.00
## v06 0.01 0.02 0.08 0.89 0.00
## v07 0.02 0.09 0.37 0.52 0.00
## v08 0.01 0.02 0.36 0.61 0.00
## v09 0.00 0.00 0.09 0.90 0.00
## v10 0.02 0.04 0.38 0.56 0.00
## v11 0.01 0.01 0.13 0.84 0.00
## v12 0.12 0.29 0.39 0.20 0.00
## v13 0.03 0.08 0.53 0.36 0.00
## v14 0.10 0.20 0.39 0.31 0.00

Question 2

The coefficient alpha for male is 0.87 while the coefficient alpha for female is 0.88. There is not much difference between them, one possibility for the realibility difference is that there are more missing data from male subjects than female subjects.