Getting started with R: Vector and dataframe

I would like to document all of my learning journey for this specific course on EDX: MITx Analytics Edge, offered to students who are interesting in using R as the data science engine. For those who are interested, go to: https://www.edx.org/course/the-analytics-edge for details.

c(2,5,1,6,3)
## [1] 2 5 1 6 3
country <- c("Brazil", "Indonesia", "China", "USA")
country
## [1] "Brazil"    "Indonesia" "China"     "USA"
lifeExpectancy <- c(78,75,72,81)

# Getting specific element. ex: Indonesia, number 2
country[2]
## [1] "Indonesia"

Creating sequence of numbers

We can also create a sequence of numbers using seq() function. See below.

seq(0,100,2)
##  [1]   0   2   4   6   8  10  12  14  16  18  20  22  24  26  28  30  32  34  36
## [20]  38  40  42  44  46  48  50  52  54  56  58  60  62  64  66  68  70  72  74
## [39]  76  78  80  82  84  86  88  90  92  94  96  98 100

Data frame in R

countryData <- data.frame(country, lifeExpectancy)
countryData
##     country lifeExpectancy
## 1    Brazil             78
## 2 Indonesia             75
## 3     China             72
## 4       USA             81

Adding data into the dataframe

Bear in mind, I just randomly created these numbers without checking their actual values.

countryData$population <- c(10000,22222,64545454,11101)
countryData
##     country lifeExpectancy population
## 1    Brazil             78      10000
## 2 Indonesia             75      22222
## 3     China             72   64545454
## 4       USA             81      11101

Combining/ appending dataframe

For instance, we have 2 extra countries – to be addded as rows.

country <- c("Switzerland", "France")
lifeExpectancy <- c(88,81)
population <- c(9000000,1191919)

newCountryData <- data.frame(country, lifeExpectancy, population)

# Adding this df to old df
AllCountrydata <- rbind(countryData, newCountryData)
AllCountrydata
##       country lifeExpectancy population
## 1      Brazil             78      10000
## 2   Indonesia             75      22222
## 3       China             72   64545454
## 4         USA             81      11101
## 5 Switzerland             88    9000000
## 6      France             81    1191919

Reading data from a CSV file

Let’s now read a CSV file in our folder. Check your directory to see the generated file :).

WHO <- read.csv("WHO.csv")
WHO
##                                       Country                Region Population
## 1                                 Afghanistan Eastern Mediterranean      29825
## 2                                     Albania                Europe       3162
## 3                                     Algeria                Africa      38482
## 4                                     Andorra                Europe         78
## 5                                      Angola                Africa      20821
## 6                         Antigua and Barbuda              Americas         89
## 7                                   Argentina              Americas      41087
## 8                                     Armenia                Europe       2969
## 9                                   Australia       Western Pacific      23050
## 10                                    Austria                Europe       8464
## 11                                 Azerbaijan                Europe       9309
## 12                                    Bahamas              Americas        372
## 13                                    Bahrain Eastern Mediterranean       1318
## 14                                 Bangladesh       South-East Asia     155000
## 15                                   Barbados              Americas        283
## 16                                    Belarus                Europe       9405
## 17                                    Belgium                Europe      11060
## 18                                     Belize              Americas        324
## 19                                      Benin                Africa      10051
## 20                                     Bhutan       South-East Asia        742
## 21           Bolivia (Plurinational State of)              Americas      10496
## 22                     Bosnia and Herzegovina                Europe       3834
## 23                                   Botswana                Africa       2004
## 24                                     Brazil              Americas     199000
## 25                          Brunei Darussalam       Western Pacific        412
## 26                                   Bulgaria                Europe       7278
## 27                               Burkina Faso                Africa      16460
## 28                                    Burundi                Africa       9850
## 29                                   Cambodia       Western Pacific      14865
## 30                                   Cameroon                Africa      21700
## 31                                     Canada              Americas      34838
## 32                                 Cape Verde                Africa        494
## 33                   Central African Republic                Africa       4525
## 34                                       Chad                Africa      12448
## 35                                      Chile              Americas      17465
## 36                                      China       Western Pacific    1390000
## 37                                   Colombia              Americas      47704
## 38                                    Comoros                Africa        718
## 39                                      Congo                Africa       4337
## 40                               Cook Islands       Western Pacific         21
## 41                                 Costa Rica              Americas       4805
## 42                                Ivory Coast                Africa      19840
## 43                                    Croatia                Europe       4307
## 44                                       Cuba              Americas      11271
## 45                                     Cyprus                Europe       1129
## 46                             Czech Republic                Europe      10660
## 47      Democratic People's Republic of Korea       South-East Asia      24763
## 48           Democratic Republic of the Congo                Africa      65705
## 49                                    Denmark                Europe       5598
## 50                                   Djibouti Eastern Mediterranean        860
## 51                                   Dominica              Americas         72
## 52                         Dominican Republic              Americas      10277
## 53                                    Ecuador              Americas      15492
## 54                                      Egypt Eastern Mediterranean      80722
## 55                                El Salvador              Americas       6297
## 56                          Equatorial Guinea                Africa        736
## 57                                    Eritrea                Africa       6131
## 58                                    Estonia                Europe       1291
## 59                                   Ethiopia                Africa      91729
## 60                                       Fiji       Western Pacific        875
## 61                                    Finland                Europe       5408
## 62                                     France                Europe      63937
## 63                                      Gabon                Africa       1633
## 64                                     Gambia                Africa       1791
## 65                                    Georgia                Europe       4358
## 66                                    Germany                Europe      82800
## 67                                      Ghana                Africa      25366
## 68                                     Greece                Europe      11125
## 69                                    Grenada              Americas        105
## 70                                  Guatemala              Americas      15083
## 71                                     Guinea                Africa      11451
## 72                              Guinea-Bissau                Africa       1664
## 73                                     Guyana              Americas        795
## 74                                      Haiti              Americas      10174
## 75                                   Honduras              Americas       7936
## 76                                    Hungary                Europe       9976
## 77                                    Iceland                Europe        326
## 78                                      India       South-East Asia    1240000
## 79                                  Indonesia       South-East Asia     247000
## 80                 Iran (Islamic Republic of) Eastern Mediterranean      76424
## 81                                       Iraq Eastern Mediterranean      32778
## 82                                    Ireland                Europe       4576
## 83                                     Israel                Europe       7644
## 84                                      Italy                Europe      60885
## 85                                    Jamaica              Americas       2769
## 86                                      Japan       Western Pacific     127000
## 87                                     Jordan Eastern Mediterranean       7009
## 88                                 Kazakhstan                Europe      16271
## 89                                      Kenya                Africa      43178
## 90                                   Kiribati       Western Pacific        101
## 91                                     Kuwait Eastern Mediterranean       3250
## 92                                 Kyrgyzstan                Europe       5474
## 93           Lao People's Democratic Republic       Western Pacific       6646
## 94                                     Latvia                Europe       2060
## 95                                    Lebanon Eastern Mediterranean       4647
## 96                                    Lesotho                Africa       2052
## 97                                    Liberia                Africa       4190
## 98                                      Libya Eastern Mediterranean       6155
## 99                                  Lithuania                Europe       3028
## 100                                Luxembourg                Europe        524
## 101                                Madagascar                Africa      22294
## 102                                    Malawi                Africa      15906
## 103                                  Malaysia       Western Pacific      29240
## 104                                  Maldives       South-East Asia        338
## 105                                      Mali                Africa      14854
## 106                                     Malta                Europe        428
## 107                          Marshall Islands       Western Pacific         53
## 108                                Mauritania                Africa       3796
## 109                                 Mauritius                Africa       1240
## 110                                    Mexico              Americas     121000
## 111          Micronesia (Federated States of)       Western Pacific        103
## 112                                    Monaco                Europe         38
## 113                                  Mongolia       Western Pacific       2796
## 114                                Montenegro                Europe        621
## 115                                   Morocco Eastern Mediterranean      32521
## 116                                Mozambique                Africa      25203
## 117                                   Myanmar       South-East Asia      52797
## 118                                   Namibia                Africa       2259
## 119                                     Nauru       Western Pacific         10
## 120                                     Nepal       South-East Asia      27474
## 121                               Netherlands                Europe      16714
## 122                               New Zealand       Western Pacific       4460
## 123                                 Nicaragua              Americas       5992
## 124                                     Niger                Africa      17157
## 125                                   Nigeria                Africa     169000
## 126                                      Niue       Western Pacific          1
## 127                                    Norway                Europe       4994
## 128                                      Oman Eastern Mediterranean       3314
## 129                                  Pakistan Eastern Mediterranean     179000
## 130                                     Palau       Western Pacific         21
## 131                                    Panama              Americas       3802
## 132                          Papua New Guinea       Western Pacific       7167
## 133                                  Paraguay              Americas       6687
## 134                                      Peru              Americas      29988
## 135                               Philippines       Western Pacific      96707
## 136                                    Poland                Europe      38211
## 137                                  Portugal                Europe      10604
## 138                                     Qatar Eastern Mediterranean       2051
## 139                         Republic of Korea       Western Pacific      49003
## 140                       Republic of Moldova                Europe       3514
## 141                                   Romania                Europe      21755
## 142                        Russian Federation                Europe     143000
## 143                                    Rwanda                Africa      11458
## 144                     Saint Kitts and Nevis              Americas         54
## 145                               Saint Lucia              Americas        181
## 146          Saint Vincent and the Grenadines              Americas        109
## 147                                     Samoa       Western Pacific        189
## 148                                San Marino                Europe         31
## 149                     Sao Tome and Principe                Africa        188
## 150                              Saudi Arabia Eastern Mediterranean      28288
## 151                                   Senegal                Africa      13726
## 152                                    Serbia                Europe       9553
## 153                                Seychelles                Africa         92
## 154                              Sierra Leone                Africa       5979
## 155                                 Singapore       Western Pacific       5303
## 156                                  Slovakia                Europe       5446
## 157                                  Slovenia                Europe       2068
## 158                           Solomon Islands       Western Pacific        550
## 159                                   Somalia Eastern Mediterranean      10195
## 160                              South Africa                Africa      52386
## 161                               South Sudan Eastern Mediterranean      10838
## 162                                     Spain                Europe      46755
## 163                                 Sri Lanka       South-East Asia      21098
## 164                                     Sudan Eastern Mediterranean      37195
## 165                                  Suriname              Americas        535
## 166                                 Swaziland                Africa       1231
## 167                                    Sweden                Europe       9511
## 168                               Switzerland                Europe       7997
## 169                      Syrian Arab Republic Eastern Mediterranean      21890
## 170                                Tajikistan                Europe       8009
## 171                                  Thailand       South-East Asia      66785
## 172 The former Yugoslav Republic of Macedonia                Europe       2106
## 173                               Timor-Leste       South-East Asia       1114
## 174                                      Togo                Africa       6643
## 175                                     Tonga       Western Pacific        105
## 176                       Trinidad and Tobago              Americas       1337
## 177                                   Tunisia Eastern Mediterranean      10875
## 178                                    Turkey                Europe      73997
## 179                              Turkmenistan                Europe       5173
## 180                                    Tuvalu       Western Pacific         10
## 181                                    Uganda                Africa      36346
## 182                                   Ukraine                Europe      45530
## 183                      United Arab Emirates Eastern Mediterranean       9206
## 184                            United Kingdom                Europe      62783
## 185               United Republic of Tanzania                Africa      47783
## 186                  United States of America              Americas     318000
## 187                                   Uruguay              Americas       3395
## 188                                Uzbekistan                Europe      28541
## 189                                   Vanuatu       Western Pacific        247
## 190        Venezuela (Bolivarian Republic of)              Americas      29955
## 191                                  Viet Nam       Western Pacific      90796
## 192                                     Yemen Eastern Mediterranean      23852
## 193                                    Zambia                Africa      14075
## 194                                  Zimbabwe                Africa      13724
##     Under15 Over60 FertilityRate LifeExpectancy ChildMortality
## 1     47.42   3.82          5.40             60           98.5
## 2     21.33  14.93          1.75             74           16.7
## 3     27.42   7.17          2.83             73           20.0
## 4     15.20  22.86            NA             82            3.2
## 5     47.58   3.84          6.10             51          163.5
## 6     25.96  12.35          2.12             75            9.9
## 7     24.42  14.97          2.20             76           14.2
## 8     20.34  14.06          1.74             71           16.4
## 9     18.95  19.46          1.89             82            4.9
## 10    14.51  23.52          1.44             81            4.0
## 11    22.25   8.24          1.96             71           35.2
## 12    21.62  11.24          1.90             75           16.9
## 13    20.16   3.38          2.12             79            9.6
## 14    30.57   6.89          2.24             70           40.9
## 15    18.99  15.78          1.84             78           18.4
## 16    15.10  19.31          1.47             71            5.2
## 17    16.88  23.81          1.85             80            4.2
## 18    34.40   5.74          2.76             74           18.3
## 19    42.95   4.54          5.01             57           89.5
## 20    28.53   6.90          2.32             67           44.6
## 21    35.23   7.28          3.31             67           41.4
## 22    16.35  20.52          1.26             76            6.7
## 23    33.75   5.63          2.71             66           53.3
## 24    24.56  10.81          1.82             74           14.4
## 25    25.75   7.03          2.03             77            8.0
## 26    13.53  26.11          1.51             74           12.1
## 27    45.66   3.88          5.78             56          102.4
## 28    44.20   3.87          6.21             53          104.3
## 29    31.23   7.67          2.93             65           39.7
## 30    43.08   4.89          4.94             53           94.9
## 31    16.37  20.82          1.66             82            5.3
## 32    30.17   7.05          2.38             72           22.2
## 33    40.07   5.74          4.54             48          128.6
## 34    48.52   3.80          6.49             51          149.8
## 35    21.38  13.80          1.84             79            9.1
## 36    17.95  13.42          1.66             76           14.0
## 37    28.03   9.19          2.35             78           17.6
## 38    42.17   4.50          4.85             62           77.6
## 39    42.37   5.13          5.05             58           96.0
## 40    30.61   9.07            NA             77           10.6
## 41    23.94  10.15          1.83             79            9.9
## 42    41.48   5.10          4.91             56          107.6
## 43    14.98  24.69          1.48             77            4.7
## 44    16.58  17.95          1.46             78            5.5
## 45    17.16  16.92          1.47             81            3.2
## 46    14.56  23.23          1.53             78            3.8
## 47    21.98  12.74          2.00             69           28.8
## 48    45.11   4.51          6.15             49          145.7
## 49    17.66  23.90          1.88             79            3.7
## 50    33.72   5.96          3.53             58           80.9
## 51    25.96  12.35            NA             74           12.6
## 52    30.53   8.97          2.55             73           27.1
## 53    30.29   9.21          2.62             76           23.3
## 54    31.25   8.62          2.85             73           21.0
## 55    30.62   9.64          2.24             72           15.9
## 56    38.95   4.53          5.04             54          100.3
## 57    43.10   3.73          4.88             61           51.8
## 58    15.69  23.92          1.62             76            3.6
## 59    43.29   5.17          4.77             60           68.3
## 60    28.88   8.38          2.64             70           22.4
## 61    16.42  25.90          1.85             81            2.9
## 62    18.26  23.82          1.98             82            4.1
## 63    38.49   7.38          4.18             62           62.0
## 64    45.90   3.72          5.79             58           72.9
## 65    17.62  19.47          1.82             72           19.9
## 66    13.17  26.72          1.40             81            4.1
## 67    38.59   5.40          3.99             64           72.0
## 68    14.60  25.41          1.51             81            4.8
## 69    26.96   9.72          2.22             74           13.5
## 70    40.80   6.56          3.91             69           32.0
## 71    42.46   5.03          5.09             55          101.2
## 72    41.55   5.06          5.05             50          129.1
## 73    36.77   5.18          2.64             63           35.2
## 74    35.35   6.70          3.28             63           75.6
## 75    35.72   6.41          3.10             74           22.9
## 76    14.62  23.41          1.38             75            6.2
## 77    20.71  17.62          2.11             82            2.3
## 78    29.43   8.10          2.53             65           56.3
## 79    29.27   7.86          2.40             69           31.0
## 80    23.68   7.82          1.91             73           17.6
## 81    40.51   4.95          4.15             69           34.4
## 82    21.54  16.59          2.00             81            4.0
## 83    27.53  15.15          2.92             82            4.2
## 84    14.04  26.97          1.45             82            3.8
## 85    27.78  10.98          2.31             75           16.8
## 86    13.12  31.92          1.39             83            3.0
## 87    34.13   5.30          3.39             74           19.1
## 88    25.46  10.04          2.52             67           18.7
## 89    42.37   4.25          4.54             60           72.9
## 90    30.10   8.84          3.01             67           59.9
## 91    24.90   3.80          2.65             80           11.0
## 92    30.21   6.34          3.03             69           26.6
## 93    35.61   5.76          3.20             68           71.8
## 94    14.57  24.24          1.57             74            8.7
## 95    21.64  12.03          1.50             74            9.3
## 96    36.75   6.31          3.15             50           99.6
## 97    43.06   4.76          4.95             59           74.8
## 98    29.45   6.96          2.47             65           15.4
## 99    15.13  20.57          1.49             74            5.4
## 100   17.46  19.15          1.65             82            2.2
## 101   42.72   4.45          4.59             66           58.2
## 102   45.44   4.92          5.55             58           71.0
## 103   26.65   8.21          1.99             74            8.5
## 104   29.03   6.65          2.31             77           10.5
## 105   47.14   4.29          6.85             51          128.0
## 106   14.98  22.87          1.37             80            6.8
## 107   30.10   8.84            NA             60           37.9
## 108   40.22   4.94          4.78             59           84.0
## 109   20.17  13.23          1.51             74           15.1
## 110   29.02   9.18          2.25             75           16.2
## 111   35.81   6.67          3.40             69           38.5
## 112   18.26  23.82            NA             82            3.8
## 113   27.05   5.80          2.45             68           27.5
## 114   19.01  18.58          1.69             76            5.9
## 115   27.85   7.61          2.65             72           31.1
## 116   45.38   5.01          5.34             53           89.7
## 117   25.28   8.15          1.98             65           52.3
## 118   36.59   5.38          3.17             65           38.7
## 119   30.10   8.84            NA             71           37.1
## 120   35.58   7.65          2.50             68           41.6
## 121   17.21  23.02          1.76             81            4.1
## 122   20.26  19.01          2.10             81            5.7
## 123   33.37   6.59          2.59             73           24.4
## 124   49.99   4.26          7.58             56          113.5
## 125   44.23   4.49          6.02             53          123.7
## 126   30.61   9.07            NA             72           25.1
## 127   18.64  21.41          1.93             81            2.8
## 128   24.19   3.99          2.90             72           11.6
## 129   34.31   6.44          3.35             67           85.9
## 130   30.10   8.84            NA             72           20.8
## 131   28.65  10.13          2.52             77           18.5
## 132   38.37   4.79          3.90             63           63.0
## 133   32.78   8.01          2.93             75           22.0
## 134   29.18   9.12          2.48             77           18.2
## 135   34.53   6.21          3.11             69           29.8
## 136   14.91  20.48          1.39             76            5.0
## 137   14.92  24.39          1.33             80            3.6
## 138   13.28   1.73          2.06             82            7.4
## 139   15.25  16.58          1.29             81            3.8
## 140   16.52  16.72          1.47             71           17.6
## 141   15.05  20.66          1.39             74           12.2
## 142   15.45  18.60          1.51             69           10.3
## 143   43.56   3.94          4.73             60           55.0
## 144   25.96  12.35            NA             74            9.2
## 145   24.31  12.13          1.96             75           17.5
## 146   25.70   9.92          2.05             74           23.4
## 147   37.88   7.39          4.28             73           17.8
## 148   14.04  26.97            NA             83            3.3
## 149   41.60   4.76          4.22             63           53.2
## 150   29.69   4.59          2.76             76            8.6
## 151   43.54   4.57          5.02             61           59.6
## 152   16.45  20.52          1.37             74            6.6
## 153   21.95  10.05          2.23             74           13.1
## 154   41.74   4.41          4.86             47          181.6
## 155   16.48  15.13          1.27             82            2.9
## 156   15.00  18.60          1.37             76            7.5
## 157   14.16  23.16          1.49             80            3.1
## 158   40.37   5.10          4.17             70           31.1
## 159   47.35   4.46          6.77             50          147.4
## 160   29.53   8.44          2.44             58           44.6
## 161   42.28   5.26          5.10             54          104.0
## 162   15.20  22.86          1.47             82            4.5
## 163   25.15  12.40          2.35             75            9.6
## 164   41.48   4.99          4.56             62           73.1
## 165   27.83   9.55          2.32             72           20.8
## 166   38.05   5.34          3.48             50           79.7
## 167   16.71  25.32          1.93             82            2.9
## 168   14.79  23.25          1.51             83            4.3
## 169   35.35   6.09          3.04             75           15.1
## 170   35.75   4.80          3.81             68           58.3
## 171   18.47  13.96          1.43             74           13.2
## 172   16.89  17.56          1.44             75            7.4
## 173   46.33   5.16          6.11             64           56.7
## 174   41.89   4.44          4.75             56           95.5
## 175   37.33   7.96          3.86             72           12.8
## 176   20.73  13.18          1.80             71           20.7
## 177   23.22  10.49          2.04             76           16.1
## 178   26.00  10.56          2.08             76           14.2
## 179   28.65   6.30          2.38             63           52.8
## 180   30.61   9.07            NA             64           29.7
## 181   48.54   3.72          6.06             56           68.9
## 182   14.18  20.76          1.45             71           10.7
## 183   14.41   0.81          1.84             76            8.4
## 184   17.54  23.06          1.90             80            4.8
## 185   44.85   4.89          5.36             59           54.0
## 186   19.63  19.31          2.00             79            7.1
## 187   22.05  18.59          2.07             77            7.2
## 188   28.90   6.38          2.38             68           39.6
## 189   37.37   6.02          3.46             72           17.9
## 190   28.84   9.17          2.44             75           15.3
## 191   22.87   9.32          1.79             75           23.0
## 192   40.72   4.54          4.35             64           60.0
## 193   46.73   3.95          5.77             55           88.5
## 194   40.24   5.68          3.64             54           89.8
##     CellularSubscribers LiteracyRate   GNI PrimarySchoolEnrollmentMale
## 1                 54.26           NA  1140                          NA
## 2                 96.39           NA  8820                          NA
## 3                 98.99           NA  8310                        98.2
## 4                 75.49           NA    NA                        78.4
## 5                 48.38         70.1  5230                        93.1
## 6                196.41         99.0 17900                        91.1
## 7                134.92         97.8 17130                          NA
## 8                103.57         99.6  6100                          NA
## 9                108.34           NA 38110                        96.9
## 10               154.78           NA 42050                          NA
## 11               108.75           NA  8960                        85.3
## 12                86.06           NA    NA                          NA
## 13               127.96         91.9    NA                          NA
## 14                56.06         56.8  1940                          NA
## 15               127.01           NA    NA                          NA
## 16               111.88           NA 14460                          NA
## 17               116.61           NA 39190                        98.9
## 18                69.96           NA  6090                          NA
## 19                85.33         42.4  1620                          NA
## 20                65.58           NA  5570                        88.3
## 21                82.82           NA  4890                        91.2
## 22                84.52         97.9  9190                        86.5
## 23               142.82         84.5 14550                          NA
## 24               124.26           NA 11420                          NA
## 25               109.17         95.2    NA                          NA
## 26               140.68           NA 14160                        99.3
## 27                45.27           NA  1300                        60.7
## 28                22.33         67.2   610                          NA
## 29                96.17           NA  2230                        96.4
## 30                52.35           NA  2330                        99.6
## 31                79.73           NA 39660                          NA
## 32                79.19         84.3  3980                        94.6
## 33                40.65         56.0   810                        81.3
## 34                31.80         34.5  1360                          NA
## 35               129.71           NA 16330                        94.3
## 36                73.19         94.3  8390                          NA
## 37                98.45         93.4  9560                        91.7
## 38                28.71         74.9  1110                          NA
## 39                93.84           NA  3240                        92.3
## 40                   NA           NA    NA                        97.6
## 41                92.20         96.2 11860                          NA
## 42                86.06         56.2  1710                          NA
## 43               116.37         98.8 18760                        94.8
## 44                11.69         99.8    NA                       100.0
## 45                97.71         98.3    NA                        99.1
## 46               123.44           NA 24370                          NA
## 47                 4.09           NA    NA                          NA
## 48                23.09         66.8   340                          NA
## 49               128.47           NA 41900                        94.8
## 50                21.32           NA    NA                          NA
## 51               164.02           NA 13000                          NA
## 52                87.22         89.5  9420                        95.5
## 53               104.55         91.9  8510                          NA
## 54               101.08         72.0  6120                          NA
## 55               133.54         84.5  6640                        95.2
## 56                59.15         93.9 25620                        56.5
## 57                 4.47         67.8   580                        37.2
## 58               138.98         99.8 20850                        97.7
## 59                16.67           NA  1110                        84.8
## 60                83.72           NA  4610                          NA
## 61               166.02           NA 37670                        97.7
## 62                94.79           NA 35910                        99.1
## 63               117.32         88.4 13740                          NA
## 64                78.89         50.0  1750                        68.2
## 65               102.31         99.7  5350                          NA
## 66               132.30           NA 40230                          NA
## 67                84.78         67.3  1810                          NA
## 68               106.48         97.2 25100                        98.8
## 69                   NA           NA 10350                          NA
## 70               140.38         75.2  4760                        98.6
## 71                44.02         41.0  1020                        85.2
## 72                56.18         54.2  1240                        76.7
## 73                69.94           NA    NA                        82.4
## 74                41.49           NA  1180                          NA
## 75               103.97         84.8  3820                        94.8
## 76               117.30         99.0 20310                        97.8
## 77               106.08           NA 31020                        98.8
## 78                72.00           NA  3590                          NA
## 79               103.09           NA  4500                          NA
## 80                74.93           NA    NA                          NA
## 81                78.12         78.2  3750                          NA
## 82               108.41           NA 34180                        99.4
## 83               121.66           NA 27110                        97.0
## 84               157.93         98.9 32400                        99.6
## 85               108.12         86.6    NA                        83.4
## 86               104.95           NA 35330                          NA
## 87               118.20         92.6  5930                        90.8
## 88               155.74         99.7 11250                          NA
## 89                67.49         87.4  1710                          NA
## 90                13.64           NA  3300                          NA
## 91               175.09           NA    NA                          NA
## 92               116.40           NA  2180                        95.5
## 93                87.16           NA  2580                        98.1
## 94               102.94         99.8 17700                        95.0
## 95                78.65           NA 14470                        93.5
## 96                56.17         89.6  2050                        72.2
## 97                49.17         60.8   540                          NA
## 98               155.70         89.2    NA                          NA
## 99               151.30         99.7 19640                        95.6
## 100              148.27           NA 64260                        93.6
## 101               40.65           NA   950                          NA
## 102               25.69         74.8   870                          NA
## 103              127.04         93.1 15650                          NA
## 104              165.72           NA  7430                        96.5
## 105               68.32         31.1  1040                        70.6
## 106              124.86           NA    NA                        93.3
## 107                  NA           NA    NA                          NA
## 108               93.60         58.0  2400                        72.8
## 109               99.04         88.5 14330                          NA
## 110               82.38         93.1 15390                        99.2
## 111                  NA           NA  3580                          NA
## 112               89.73           NA    NA                          NA
## 113              105.08         97.4  4290                        99.6
## 114                  NA         98.4 13700                          NA
## 115              113.26           NA  4880                          NA
## 116               32.83         56.1   970                        94.6
## 117                2.57         92.3    NA                          NA
## 118               96.39         88.8  6560                        83.8
## 119               65.00           NA    NA                          NA
## 120               43.81         60.3  1260                          NA
## 121                  NA           NA 43140                          NA
## 122              109.19           NA    NA                        99.3
## 123               82.15           NA  3730                        93.2
## 124               29.52           NA   720                        64.2
## 125               58.58         61.3  2290                        60.1
## 126                  NA           NA    NA                          NA
## 127              115.62           NA 61460                        99.1
## 128              168.97           NA    NA                          NA
## 129               61.61           NA  2870                        81.3
## 130               74.94           NA 11080                          NA
## 131              188.60         94.1 14510                        99.1
## 132               34.22         60.6  2570                          NA
## 133               99.40         93.9  5390                        84.4
## 134              110.41           NA  9440                        97.8
## 135               99.30           NA  4140                          NA
## 136              130.97         99.5 20430                        96.9
## 137              115.39         95.2 24440                        99.1
## 138              123.11         96.3 86440                        95.7
## 139              108.50           NA 30370                        99.3
## 140              104.80         98.5  3640                        90.1
## 141              109.16         97.7 15120                        87.9
## 142              179.31         99.6 20560                          NA
## 143               40.63         71.1  1270                          NA
## 144                  NA           NA 16470                        85.8
## 145              123.00           NA 11220                        90.2
## 146              120.52           NA 10440                          NA
## 147                  NA         98.8  4270                        93.2
## 148              111.75           NA    NA                          NA
## 149               68.26         89.2  2080                          NA
## 150              191.24         86.6 24700                        96.7
## 151               73.25           NA  1940                        75.9
## 152              125.39         97.9 11540                        94.7
## 153              145.71         91.8 25140                          NA
## 154               35.63         42.1   840                          NA
## 155              150.24         95.9 59380                          NA
## 156              109.35           NA 22130                          NA
## 157              106.56         99.7 26510                        97.7
## 158               49.77           NA  2350                        87.7
## 159                6.85           NA    NA                          NA
## 160              126.83           NA 10710                          NA
## 161                  NA           NA    NA                          NA
## 162              113.22         97.7 31400                        99.7
## 163               87.05         91.2  5520                        93.9
## 164               56.14         71.1  2120                          NA
## 165              178.88         94.7    NA                          NA
## 166               63.70         87.4  5930                          NA
## 167              118.57           NA 42200                        99.7
## 168              131.43           NA 52570                        98.9
## 169               63.17         83.4    NA                          NA
## 170               90.64         99.7  2300                        99.5
## 171              111.63           NA  8360                          NA
## 172              107.24         97.3 11090                        97.3
## 173               53.23         58.3    NA                        86.2
## 174               50.45           NA  1040                          NA
## 175               52.63           NA  5000                          NA
## 176              135.64         98.8    NA                        97.7
## 177              116.93           NA  9030                          NA
## 178               88.70           NA 16940                        99.5
## 179               68.77         99.6  8690                          NA
## 180               21.63           NA    NA                          NA
## 181               48.38         73.2  1310                        89.7
## 182              122.98         99.7  7040                        90.8
## 183              148.62           NA 47890                          NA
## 184              130.75           NA 36010                        99.8
## 185               55.53         73.2  1500                          NA
## 186               92.72           NA 48820                        95.4
## 187              140.75         98.1 14640                          NA
## 188               91.65         99.4  3420                        93.3
## 189               55.76         82.6  4330                          NA
## 190               97.78           NA 12430                        94.7
## 191              143.39         93.2  3250                          NA
## 192               47.05         63.9  2170                        85.5
## 193               60.59         71.2  1490                        91.4
## 194               72.13         92.2    NA                          NA
##     PrimarySchoolEnrollmentFemale
## 1                              NA
## 2                              NA
## 3                            96.4
## 4                            79.4
## 5                            78.2
## 6                            84.5
## 7                              NA
## 8                              NA
## 9                            97.5
## 10                             NA
## 11                           84.1
## 12                             NA
## 13                             NA
## 14                             NA
## 15                             NA
## 16                             NA
## 17                           99.2
## 18                             NA
## 19                             NA
## 20                           91.5
## 21                           91.5
## 22                           88.4
## 23                             NA
## 24                             NA
## 25                             NA
## 26                           99.7
## 27                           55.9
## 28                             NA
## 29                           95.4
## 30                           87.4
## 31                             NA
## 32                           92.4
## 33                           60.6
## 34                             NA
## 35                           94.4
## 36                             NA
## 37                           91.3
## 38                             NA
## 39                           89.3
## 40                           99.3
## 41                             NA
## 42                             NA
## 43                           97.0
## 44                           99.7
## 45                           99.5
## 46                             NA
## 47                             NA
## 48                             NA
## 49                           96.9
## 50                             NA
## 51                             NA
## 52                           90.4
## 53                             NA
## 54                             NA
## 55                           95.5
## 56                           56.0
## 57                           32.5
## 58                           97.0
## 59                           79.5
## 60                             NA
## 61                           97.9
## 62                           99.3
## 63                             NA
## 64                           70.4
## 65                             NA
## 66                             NA
## 67                             NA
## 68                           99.3
## 69                             NA
## 70                           97.5
## 71                           72.1
## 72                           73.3
## 73                           85.9
## 74                             NA
## 75                           97.0
## 76                           98.3
## 77                           99.2
## 78                             NA
## 79                             NA
## 80                             NA
## 81                             NA
## 82                          100.0
## 83                           97.8
## 84                           98.5
## 85                           81.4
## 86                             NA
## 87                           90.7
## 88                             NA
## 89                             NA
## 90                             NA
## 91                             NA
## 92                           95.1
## 93                           95.4
## 94                           96.8
## 95                           92.9
## 96                           75.3
## 97                             NA
## 98                             NA
## 99                           95.8
## 100                          95.7
## 101                            NA
## 102                            NA
## 103                            NA
## 104                          96.5
## 105                          60.8
## 106                          94.3
## 107                            NA
## 108                          76.0
## 109                            NA
## 110                          99.9
## 111                            NA
## 112                            NA
## 113                          98.5
## 114                            NA
## 115                            NA
## 116                          89.4
## 117                            NA
## 118                          88.5
## 119                            NA
## 120                            NA
## 121                            NA
## 122                          99.6
## 123                          94.5
## 124                          52.0
## 125                          54.8
## 126                            NA
## 127                          99.2
## 128                            NA
## 129                          66.5
## 130                            NA
## 131                          98.2
## 132                            NA
## 133                          83.9
## 134                          98.5
## 135                            NA
## 136                          96.7
## 137                          99.7
## 138                          96.6
## 139                          98.4
## 140                          90.1
## 141                          87.3
## 142                            NA
## 143                            NA
## 144                          86.2
## 145                          89.2
## 146                            NA
## 147                          97.1
## 148                            NA
## 149                            NA
## 150                          96.5
## 151                          80.2
## 152                          94.4
## 153                            NA
## 154                            NA
## 155                            NA
## 156                            NA
## 157                          97.3
## 158                          87.3
## 159                            NA
## 160                            NA
## 161                            NA
## 162                          99.8
## 163                          94.4
## 164                            NA
## 165                            NA
## 166                            NA
## 167                          99.0
## 168                          99.5
## 169                            NA
## 170                          96.0
## 171                            NA
## 172                          99.2
## 173                          85.6
## 174                            NA
## 175                            NA
## 176                          97.0
## 177                            NA
## 178                          98.3
## 179                            NA
## 180                            NA
## 181                          92.3
## 182                          91.5
## 183                            NA
## 184                          99.6
## 185                            NA
## 186                          96.1
## 187                            NA
## 188                          91.0
## 189                            NA
## 190                          95.1
## 191                            NA
## 192                          70.5
## 193                          93.9
## 194                            NA
str(WHO)
## 'data.frame':    194 obs. of  13 variables:
##  $ Country                      : chr  "Afghanistan" "Albania" "Algeria" "Andorra" ...
##  $ Region                       : chr  "Eastern Mediterranean" "Europe" "Africa" "Europe" ...
##  $ Population                   : int  29825 3162 38482 78 20821 89 41087 2969 23050 8464 ...
##  $ Under15                      : num  47.4 21.3 27.4 15.2 47.6 ...
##  $ Over60                       : num  3.82 14.93 7.17 22.86 3.84 ...
##  $ FertilityRate                : num  5.4 1.75 2.83 NA 6.1 2.12 2.2 1.74 1.89 1.44 ...
##  $ LifeExpectancy               : int  60 74 73 82 51 75 76 71 82 81 ...
##  $ ChildMortality               : num  98.5 16.7 20 3.2 163.5 ...
##  $ CellularSubscribers          : num  54.3 96.4 99 75.5 48.4 ...
##  $ LiteracyRate                 : num  NA NA NA NA 70.1 99 97.8 99.6 NA NA ...
##  $ GNI                          : num  1140 8820 8310 NA 5230 ...
##  $ PrimarySchoolEnrollmentMale  : num  NA NA 98.2 78.4 93.1 91.1 NA NA 96.9 NA ...
##  $ PrimarySchoolEnrollmentFemale: num  NA NA 96.4 79.4 78.2 84.5 NA NA 97.5 NA ...
# We can even call a summary function
summary(WHO)
##    Country             Region            Population         Under15     
##  Length:194         Length:194         Min.   :      1   Min.   :13.12  
##  Class :character   Class :character   1st Qu.:   1696   1st Qu.:18.72  
##  Mode  :character   Mode  :character   Median :   7790   Median :28.65  
##                                        Mean   :  36360   Mean   :28.73  
##                                        3rd Qu.:  24535   3rd Qu.:37.75  
##                                        Max.   :1390000   Max.   :49.99  
##                                                                         
##      Over60      FertilityRate   LifeExpectancy  ChildMortality   
##  Min.   : 0.81   Min.   :1.260   Min.   :47.00   Min.   :  2.200  
##  1st Qu.: 5.20   1st Qu.:1.835   1st Qu.:64.00   1st Qu.:  8.425  
##  Median : 8.53   Median :2.400   Median :72.50   Median : 18.600  
##  Mean   :11.16   Mean   :2.941   Mean   :70.01   Mean   : 36.149  
##  3rd Qu.:16.69   3rd Qu.:3.905   3rd Qu.:76.00   3rd Qu.: 55.975  
##  Max.   :31.92   Max.   :7.580   Max.   :83.00   Max.   :181.600  
##                  NA's   :11                                       
##  CellularSubscribers  LiteracyRate        GNI       
##  Min.   :  2.57      Min.   :31.10   Min.   :  340  
##  1st Qu.: 63.57      1st Qu.:71.60   1st Qu.: 2335  
##  Median : 97.75      Median :91.80   Median : 7870  
##  Mean   : 93.64      Mean   :83.71   Mean   :13321  
##  3rd Qu.:120.81      3rd Qu.:97.85   3rd Qu.:17558  
##  Max.   :196.41      Max.   :99.80   Max.   :86440  
##  NA's   :10          NA's   :91      NA's   :32     
##  PrimarySchoolEnrollmentMale PrimarySchoolEnrollmentFemale
##  Min.   : 37.20              Min.   : 32.50               
##  1st Qu.: 87.70              1st Qu.: 87.30               
##  Median : 94.70              Median : 95.10               
##  Mean   : 90.85              Mean   : 89.63               
##  3rd Qu.: 98.10              3rd Qu.: 97.90               
##  Max.   :100.00              Max.   :100.00               
##  NA's   :93                  NA's   :93

Taking only a small subset of DF

What about taking smaller fractions of our data? Yes we can, using subset function. Afterward, we output this into “WHO_Europe.csv” file.

WHO_Europe <- subset(WHO, Region == "Europe")
str(WHO_Europe)
## 'data.frame':    53 obs. of  13 variables:
##  $ Country                      : chr  "Albania" "Andorra" "Armenia" "Austria" ...
##  $ Region                       : chr  "Europe" "Europe" "Europe" "Europe" ...
##  $ Population                   : int  3162 78 2969 8464 9309 9405 11060 3834 7278 4307 ...
##  $ Under15                      : num  21.3 15.2 20.3 14.5 22.2 ...
##  $ Over60                       : num  14.93 22.86 14.06 23.52 8.24 ...
##  $ FertilityRate                : num  1.75 NA 1.74 1.44 1.96 1.47 1.85 1.26 1.51 1.48 ...
##  $ LifeExpectancy               : int  74 82 71 81 71 71 80 76 74 77 ...
##  $ ChildMortality               : num  16.7 3.2 16.4 4 35.2 5.2 4.2 6.7 12.1 4.7 ...
##  $ CellularSubscribers          : num  96.4 75.5 103.6 154.8 108.8 ...
##  $ LiteracyRate                 : num  NA NA 99.6 NA NA NA NA 97.9 NA 98.8 ...
##  $ GNI                          : num  8820 NA 6100 42050 8960 ...
##  $ PrimarySchoolEnrollmentMale  : num  NA 78.4 NA NA 85.3 NA 98.9 86.5 99.3 94.8 ...
##  $ PrimarySchoolEnrollmentFemale: num  NA 79.4 NA NA 84.1 NA 99.2 88.4 99.7 97 ...
# Storing this subset into a separate csv
write.csv(WHO_Europe, "WHO_Eur.csv")

# This line is used to check our variables
ls()
## [1] "AllCountrydata" "country"        "countryData"    "lifeExpectancy"
## [5] "newCountryData" "population"     "WHO"            "WHO_Europe"
# We can also remove a specific variable by using rm()
rm(countyrdata) #terribly misspelled
## Warning in rm(countyrdata): object 'countyrdata' not found

Doing basic data analysis

We can practice some data analysis in this exercise such as mean, etc.

WHO$Under15
##   [1] 47.42 21.33 27.42 15.20 47.58 25.96 24.42 20.34 18.95 14.51 22.25 21.62
##  [13] 20.16 30.57 18.99 15.10 16.88 34.40 42.95 28.53 35.23 16.35 33.75 24.56
##  [25] 25.75 13.53 45.66 44.20 31.23 43.08 16.37 30.17 40.07 48.52 21.38 17.95
##  [37] 28.03 42.17 42.37 30.61 23.94 41.48 14.98 16.58 17.16 14.56 21.98 45.11
##  [49] 17.66 33.72 25.96 30.53 30.29 31.25 30.62 38.95 43.10 15.69 43.29 28.88
##  [61] 16.42 18.26 38.49 45.90 17.62 13.17 38.59 14.60 26.96 40.80 42.46 41.55
##  [73] 36.77 35.35 35.72 14.62 20.71 29.43 29.27 23.68 40.51 21.54 27.53 14.04
##  [85] 27.78 13.12 34.13 25.46 42.37 30.10 24.90 30.21 35.61 14.57 21.64 36.75
##  [97] 43.06 29.45 15.13 17.46 42.72 45.44 26.65 29.03 47.14 14.98 30.10 40.22
## [109] 20.17 29.02 35.81 18.26 27.05 19.01 27.85 45.38 25.28 36.59 30.10 35.58
## [121] 17.21 20.26 33.37 49.99 44.23 30.61 18.64 24.19 34.31 30.10 28.65 38.37
## [133] 32.78 29.18 34.53 14.91 14.92 13.28 15.25 16.52 15.05 15.45 43.56 25.96
## [145] 24.31 25.70 37.88 14.04 41.60 29.69 43.54 16.45 21.95 41.74 16.48 15.00
## [157] 14.16 40.37 47.35 29.53 42.28 15.20 25.15 41.48 27.83 38.05 16.71 14.79
## [169] 35.35 35.75 18.47 16.89 46.33 41.89 37.33 20.73 23.22 26.00 28.65 30.61
## [181] 48.54 14.18 14.41 17.54 44.85 19.63 22.05 28.90 37.37 28.84 22.87 40.72
## [193] 46.73 40.24
mean(WHO$Under15)
## [1] 28.73242
# and std dev

sd(WHO$Under15)
## [1] 10.53457
# or specific variable
summary(WHO$Under15)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   13.12   18.72   28.65   28.73   37.75   49.99

Can we index to a specific value? YES!

For instance, can we identify, which country has the the lowest or highest value in Under15? Japan is the answer.

which.min(WHO$Under15)
## [1] 86
which.max(WHO$Under15)
## [1] 124
# Now we use this as indexing

WHO$Country[which.min(WHO$Under15)]
## [1] "Japan"
WHO$Country[which.max(WHO$Under15)]
## [1] "Niger"

Plotting world in R

So, let’s start with the scatter plot: the mother of all plots.

plot(x = WHO$GNI, y = WHO$FertilityRate)

## Managing outliers in dataframe, after seeing the plot

Can we spot the outliers from figure above? yep, of course!

outliers <- subset(WHO, GNI > 10000 & FertilityRate > 2.5)
nrow(outliers) 
## [1] 7
# Then we output them
outliers[c("Country", "GNI", "FertilityRate")]
##               Country   GNI FertilityRate
## 23           Botswana 14550          2.71
## 56  Equatorial Guinea 25620          5.04
## 63              Gabon 13740          4.18
## 83             Israel 27110          2.92
## 88         Kazakhstan 11250          2.52
## 131            Panama 14510          2.52
## 150      Saudi Arabia 24700          2.76

Answering some questions on the website

These are just some lines to answer questions after the video. Feel free to skip.

colnames(WHO)
##  [1] "Country"                       "Region"                       
##  [3] "Population"                    "Under15"                      
##  [5] "Over60"                        "FertilityRate"                
##  [7] "LifeExpectancy"                "ChildMortality"               
##  [9] "CellularSubscribers"           "LiteracyRate"                 
## [11] "GNI"                           "PrimarySchoolEnrollmentMale"  
## [13] "PrimarySchoolEnrollmentFemale"
mean(WHO$Over60)
## [1] 11.16366
WHO$Country[which.min(WHO$Over60)]
## [1] "United Arab Emirates"
WHO$Country[which.max(WHO$LiteracyRate)]
## [1] "Cuba"

Fun parts: Playing with statistical distributions on R.

Here comes the interesting journey in R, how easy it is to build plots (somewhat complex in EXCEL) with only 1 - 2 lines of code. Embrace!

hist(WHO$CellularSubscribers)

boxplot(WHO$LifeExpectancy ~ WHO$Region)

# we fix some labelling and title.
boxplot(WHO$LifeExpectancy ~ WHO$Region, 
        xlab = "", ylab = "Life Expectancy",
        main = "Life Expectancy of Countries by Region")

# Creating a summary output in a table

We can also create a table from our dataframe as the summary output.

table(WHO$Region)
## 
##                Africa              Americas Eastern Mediterranean 
##                    46                    35                    22 
##                Europe       South-East Asia       Western Pacific 
##                    53                    11                    27

Can we use it to find aggregated results? Ex: the percentage of pop over 60 in these regions. HOW?

Yes, we use the function called tapply :) Behold.

tapply(WHO$Over60, WHO$Region, mean)
##                Africa              Americas Eastern Mediterranean 
##              5.220652             10.943714              5.620000 
##                Europe       South-East Asia       Western Pacific 
##             19.774906              8.769091             10.162963
# Lets then find other results
tapply(WHO$LiteracyRate, WHO$Region, min, na.rm = TRUE)
##                Africa              Americas Eastern Mediterranean 
##                  31.1                  75.2                  63.9 
##                Europe       South-East Asia       Western Pacific 
##                  95.2                  56.8                  60.6

Answering questions from the course, part 2

If you like, you can skip again this part.

tapply(WHO$ChildMortality, WHO$Region, min, na.rm = TRUE)
##                Africa              Americas Eastern Mediterranean 
##                  13.1                   5.3                   7.4 
##                Europe       South-East Asia       Western Pacific 
##                   2.2                   9.6                   2.9

The start of Recitation: USDA Nutritional Education, Understanding food

Allright folks, now we enter the recitation part of this week. Are you ready? Yes, I am so pumped too. Let’s get started! Of course, the first thing to do is to load the data

USDA <- read.csv("USDA.csv")

#and somwewhat mandatory steps in any EDA, Str and Summary
str(USDA)
## 'data.frame':    7058 obs. of  16 variables:
##  $ ID          : int  1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ...
##  $ Description : chr  "BUTTER,WITH SALT" "BUTTER,WHIPPED,WITH SALT" "BUTTER OIL,ANHYDROUS" "CHEESE,BLUE" ...
##  $ Calories    : int  717 717 876 353 371 334 300 376 403 387 ...
##  $ Protein     : num  0.85 0.85 0.28 21.4 23.24 ...
##  $ TotalFat    : num  81.1 81.1 99.5 28.7 29.7 ...
##  $ Carbohydrate: num  0.06 0.06 0 2.34 2.79 0.45 0.46 3.06 1.28 4.78 ...
##  $ Sodium      : int  714 827 2 1395 560 629 842 690 621 700 ...
##  $ SaturatedFat: num  51.4 50.5 61.9 18.7 18.8 ...
##  $ Cholesterol : int  215 219 256 75 94 100 72 93 105 103 ...
##  $ Sugar       : num  0.06 0.06 0 0.5 0.51 0.45 0.46 NA 0.52 NA ...
##  $ Calcium     : int  24 24 4 528 674 184 388 673 721 643 ...
##  $ Iron        : num  0.02 0.16 0 0.31 0.43 0.5 0.33 0.64 0.68 0.21 ...
##  $ Potassium   : int  24 26 5 256 136 152 187 93 98 95 ...
##  $ VitaminC    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ VitaminE    : num  2.32 2.32 2.8 0.25 0.26 0.24 0.21 NA 0.29 NA ...
##  $ VitaminD    : num  1.5 1.5 1.8 0.5 0.5 0.5 0.4 NA 0.6 NA ...
summary(USDA)
##        ID        Description           Calories        Protein     
##  Min.   : 1001   Length:7058        Min.   :  0.0   Min.   : 0.00  
##  1st Qu.: 8387   Class :character   1st Qu.: 85.0   1st Qu.: 2.29  
##  Median :13294   Mode  :character   Median :181.0   Median : 8.20  
##  Mean   :14260                      Mean   :219.7   Mean   :11.71  
##  3rd Qu.:18337                      3rd Qu.:331.0   3rd Qu.:20.43  
##  Max.   :93600                      Max.   :902.0   Max.   :88.32  
##                                     NA's   :1       NA's   :1      
##     TotalFat       Carbohydrate        Sodium         SaturatedFat   
##  Min.   :  0.00   Min.   :  0.00   Min.   :    0.0   Min.   : 0.000  
##  1st Qu.:  0.72   1st Qu.:  0.00   1st Qu.:   37.0   1st Qu.: 0.172  
##  Median :  4.37   Median :  7.13   Median :   79.0   Median : 1.256  
##  Mean   : 10.32   Mean   : 20.70   Mean   :  322.1   Mean   : 3.452  
##  3rd Qu.: 12.70   3rd Qu.: 28.17   3rd Qu.:  386.0   3rd Qu.: 4.028  
##  Max.   :100.00   Max.   :100.00   Max.   :38758.0   Max.   :95.600  
##  NA's   :1        NA's   :1        NA's   :84        NA's   :301     
##   Cholesterol          Sugar           Calcium             Iron        
##  Min.   :   0.00   Min.   : 0.000   Min.   :   0.00   Min.   :  0.000  
##  1st Qu.:   0.00   1st Qu.: 0.000   1st Qu.:   9.00   1st Qu.:  0.520  
##  Median :   3.00   Median : 1.395   Median :  19.00   Median :  1.330  
##  Mean   :  41.55   Mean   : 8.257   Mean   :  73.53   Mean   :  2.828  
##  3rd Qu.:  69.00   3rd Qu.: 7.875   3rd Qu.:  56.00   3rd Qu.:  2.620  
##  Max.   :3100.00   Max.   :99.800   Max.   :7364.00   Max.   :123.600  
##  NA's   :288       NA's   :1910     NA's   :136       NA's   :123      
##    Potassium          VitaminC           VitaminE          VitaminD       
##  Min.   :    0.0   Min.   :   0.000   Min.   :  0.000   Min.   :  0.0000  
##  1st Qu.:  135.0   1st Qu.:   0.000   1st Qu.:  0.120   1st Qu.:  0.0000  
##  Median :  250.0   Median :   0.000   Median :  0.270   Median :  0.0000  
##  Mean   :  301.4   Mean   :   9.436   Mean   :  1.488   Mean   :  0.5769  
##  3rd Qu.:  348.0   3rd Qu.:   3.100   3rd Qu.:  0.710   3rd Qu.:  0.1000  
##  Max.   :16500.0   Max.   :2400.000   Max.   :149.400   Max.   :250.0000  
##  NA's   :409       NA's   :332        NA's   :2720      NA's   :2834

There is a weird number!

The amount of sodium (max value) that summary function gives us is way too high. Let’s find out what that is.

names(USDA)
##  [1] "ID"           "Description"  "Calories"     "Protein"      "TotalFat"    
##  [6] "Carbohydrate" "Sodium"       "SaturatedFat" "Cholesterol"  "Sugar"       
## [11] "Calcium"      "Iron"         "Potassium"    "VitaminC"     "VitaminE"    
## [16] "VitaminD"
USDA$Description[which.max(USDA$Sodium)]
## [1] "SALT,TABLE"

What about high containing sodium?

We can create a subset of data, using subset function indeed :)

HiSodium <- subset(USDA, Sodium > 10000)
nrow(HiSodium)
## [1] 10
HiSodium$Description
##  [1] "SALT,TABLE"                                             
##  [2] "SOUP,BF BROTH OR BOUILLON,PDR,DRY"                      
##  [3] "SOUP,BEEF BROTH,CUBED,DRY"                              
##  [4] "SOUP,CHICK BROTH OR BOUILLON,DRY"                       
##  [5] "SOUP,CHICK BROTH CUBES,DRY"                             
##  [6] "GRAVY,AU JUS,DRY"                                       
##  [7] "ADOBO FRESCO"                                           
##  [8] "LEAVENING AGENTS,BAKING PDR,DOUBLE-ACTING,NA AL SULFATE"
##  [9] "LEAVENING AGENTS,BAKING SODA"                           
## [10] "DESSERTS,RENNIN,TABLETS,UNSWTND"

Finding the sodium value of “CAVIAR”

Yes, we can also filter using ‘string’ as input command.

match("CAVIAR", USDA$Description)
## [1] 4154
USDA$Sodium[match("CAVIAR", USDA$Description)]
## [1] 1500
# descriptive stas
mean(USDA$Sodium, na.rm = T)
## [1] 322.0592
sd(USDA$Sodium, na.rm = T)
## [1] 1045.417

Entering the visualization part of week 1 USDA DATA

Here we go, my favorite part totally!

plot(USDA$Protein, USDA$TotalFat)

plot(USDA$Protein, USDA$TotalFat, xlab = "Protein", ylab = "Fat",
     main = "Protein vs Fat", col = "red")

# Histogram of VItC Levels
hist(USDA$VitaminC, xlab = "Vit C (mg)", main = "Histogram of Vit C level")

hist(USDA$VitaminC, xlab = "Vit C (mg)", main = "Histogram of Vit C level", xlim = c(0,100), breaks = 2000)

Plotting in boxplot

We look at the sugar level now :)

boxplot(USDA$Sugar, main = "Boxplot of Sugar Levels", ylab = "Sugar (g)")

## How about creating variables using logical data as results? Sure thing bro

We can assign our logical results as numeric. See below.

HighSodium <- USDA$Sodium > mean(USDA$Sodium, na.rm = TRUE)
HighSodium
##    [1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [13]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [25]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##   [37] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##   [85]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [133] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [145]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [157] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [181]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [217]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [265]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [277]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [301]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
##  [397]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [409]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [445]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [457]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
##  [757]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [781] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [805]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [865]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [877]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [889]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [901] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [913]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [925]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [937] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [949]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [961] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [973]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [985]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [997]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1009] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1021]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1033] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [1045]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1057]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1069]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [1081]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1093]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1105]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1117]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1129]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1141] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1153]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1165]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [1177]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [1189] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [1201]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1213] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1225] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [1237]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1249]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [1261]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1273] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1285] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [1297] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1309]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1321]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1333]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1345]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1357]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1369]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1381]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1393]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1405]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1417]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1429]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1441]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1453]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1465]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1477]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [1489]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1501]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1513]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1525]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [1537]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1549] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [1561]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1573]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
## [1585]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
## [1597]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1609]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1621] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1633]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1645] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1657] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1669] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1681]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1693] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [1705]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1717]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1729]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1741] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1753]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
## [1765] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [1777]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1789]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1801]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [1813]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [1825]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
## [1837]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1849] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1861]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [1873]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
## [1885] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1897] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1909]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1921]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1933] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1945] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1957] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1969] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1981] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1993] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2005] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2017] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2029] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2041] FALSE FALSE FALSE FALSE FALSE FALSE FALSE    NA FALSE FALSE FALSE FALSE
## [2053] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2065] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2077] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
## [2089] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2101] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2113] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2125] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2137] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2149] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2161] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2173] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2185] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2197] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2209] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2221] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2233] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2245] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2257] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2269] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2281] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2293] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2305] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2317] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2329] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2341] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2353] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2365] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2377]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2389]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [2401] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [2413] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2425] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2437] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2449] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2461]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
## [2473]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2485]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2497]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2509]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2521]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2533]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [2545] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2557] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2569] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2581] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2593] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2605] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2617] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2629]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2641] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2653] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2665] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2677] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2689] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2701] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2713] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2725] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2737] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2749] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2761] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2773] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [2785] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2797] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [2809] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2821] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2833] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [2845] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2857]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [2869]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [2881]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2893] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2905]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2917] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2929] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2941] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2953]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2965] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2977] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2989] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [3001]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3013] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3025] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3037] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3049] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3061] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [3073] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [3085] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3097] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3121] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [3145] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [3157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3181] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [3193] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [3205]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [3229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3253] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3265] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [3277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [3289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [3301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [3313] FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [3325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [3337]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3349]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [3361] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [3445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [3481]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [3493]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3553] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [3565] FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [3577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE    NA
## [3901]    NA    NA    NA    NA    NA    NA    NA FALSE    NA    NA    NA    NA
## [3913] FALSE    NA    NA FALSE    NA FALSE    NA    NA    NA FALSE    NA    NA
## [3925]    NA FALSE FALSE    NA    NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3937] FALSE FALSE FALSE    NA FALSE FALSE FALSE FALSE FALSE    NA    NA FALSE
## [3949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [3961]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3973] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [4009] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4021] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [4033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4045] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4057] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4069] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [4081] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4093] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4105] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4117] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4129] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4141] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4153] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [4165] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [4177]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [4189] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [4201] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [4213] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [4225] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [4237] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [4249] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4261]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [4273] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [4285] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## [4297]  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [4309] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [4321] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [4333] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4345] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4357] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [4369] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4381] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
## [4393]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4405]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [4417] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4429] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4441] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [4453] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [4465] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4477] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [4489]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [4501] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [4513]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [4525] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [4537]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [4549] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [4561] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4573] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4585] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4597] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4609] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4621] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4633] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4645] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4657] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [4669] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4681]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4693]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4705]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4717]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4729]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [4741]  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [4753] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4765] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4777] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4789] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4801] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4813] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4825] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4837] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [4849] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4861] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4873] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4885] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE    NA FALSE FALSE FALSE
## [4897] FALSE FALSE FALSE FALSE FALSE FALSE    NA FALSE FALSE FALSE FALSE FALSE
## [4909] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4921] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4933] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4945] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4957] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4969] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4981] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [4993] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5005] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5017] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5029] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5041] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5053] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5065] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5077] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5089] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5101]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [5113]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5125]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5137]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5149]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5161]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [5173] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [5185] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5197]  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## [5209]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [5221]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5233]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [5245]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
## [5257]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [5269] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5281]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5293]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5305]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [5317]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [5329]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [5341]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [5353]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [5365]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [5377] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [5389]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [5401]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [5413]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5425]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5437] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [5449]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [5461]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5473]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [5485]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [5497]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [5509]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [5521]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
## [5533]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5545]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
## [5557] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [5569] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5581] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5593] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5605] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5617] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5629] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [5641] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5653] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [5665]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
## [5677] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [5689] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [5701] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5713] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [5725] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5737] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [5749] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [5761]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
## [5773] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [5785] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [5797] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5809]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [5821] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [5833]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
## [5845]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [5857]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [5869] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [5881] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5893] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5905] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5917] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5929] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5941]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5953] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5965] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [5977] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [5989] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [6001] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6013] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [6025]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6037] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6049] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [6061] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6073] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6085]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6097] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [6109]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [6121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
## [6133]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [6145]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [6157]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6169]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6181]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [6193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6577] FALSE FALSE FALSE    NA  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
## [6589] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [6601]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [6613] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [6625] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [6637] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [6649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6661] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6673]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6685]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE    NA    NA FALSE    NA
## [6697] FALSE    NA    NA FALSE FALSE    NA    NA    NA    NA    NA FALSE    NA
## [6709]    NA    NA    NA FALSE    NA    NA FALSE FALSE    NA FALSE    NA FALSE
## [6721] FALSE    NA FALSE FALSE    NA FALSE    NA    NA    NA    NA    NA FALSE
## [6733]    NA    NA    NA    NA    NA    NA    NA  TRUE    NA    NA    NA FALSE
## [6745]    NA FALSE    NA    NA FALSE    NA    NA    NA    NA    NA    NA    NA
## [6757]    NA    NA    NA FALSE    NA    NA    NA FALSE FALSE FALSE FALSE FALSE
## [6769] FALSE FALSE FALSE FALSE    NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6781] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [6793]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6805]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [6817] FALSE FALSE FALSE FALSE FALSE    NA FALSE FALSE FALSE FALSE FALSE FALSE
## [6829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE    NA FALSE FALSE
## [6841] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [6853]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [6865] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [6877] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [6889]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6901]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [6913]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [6925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [6937]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [6949]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [6961] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [6973]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [6985]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [6997]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
## [7009] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
## [7021] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [7033]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [7045]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## [7057] FALSE FALSE
# Assign them as numeric results: 1 or 0

HighSodium <- as.numeric(USDA$Sodium > mean(USDA$Sodium, na.rm = TRUE))
HighSodium
##    [1]  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1
##   [25]  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  0  1  1  1  1  1  1  1  1
##   [49]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   [73]  0  0  0  0  0  0  0  0  0  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0
##   [97]  0  0  0  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [121]  1  1  1  1  0  0  0  0  0  1  0  1  0  0  0  1  1  1  1  1  1  1  0  1
##  [145]  1  1  1  1  0  0  0  1  0  0  0  0  0  1  0  1  1  0  1  1  1  1  1  0
##  [169]  0  0  0  0  0  0  0  0  0  1  0  0  1  1  1  0  1  0  1  0  0  0  0  0
##  [193]  0  0  1  0  0  0  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1
##  [217]  1  1  1  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##  [241]  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
##  [265]  1  0  0  0  0  0  0  1  0  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0
##  [289]  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0
##  [313]  0  0  0  0  0  0  1  1  1  1  1  1  0  0  0  0  0  0  1  1  0  0  0  0
##  [337]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##  [361]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##  [385]  0  0  0  1  1  0  1  0  1  1  1  1  1  0  0  0  0  1  1  1  1  1  1  1
##  [409]  1  0  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
##  [433]  0  0  0  0  0  0  1  0  0  1  0  0  1  1  1  1  1  0  0  1  1  0  1  1
##  [457]  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0
##  [481]  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##  [505]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [529]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [553]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [577]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [601]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [625]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [649]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [673]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [697]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [721]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [745]  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0
##  [769]  0  0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1  1  1  1  1  0  0  0
##  [793]  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0
##  [817]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [841]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1
##  [865]  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1
##  [889]  1  0  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1
##  [913]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
##  [937]  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
##  [961]  0  1  1  1  1  1  1  1  1  0  0  0  1  1  0  1  1  1  1  0  1  0  0  0
##  [985]  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1009]  0  1  1  1  0  1  1  0  1  1  1  1  1  0  0  1  1  1  1  1  1  1  0  1
## [1033]  0  1  1  1  1  0  0  0  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1057]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1
## [1081]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1
## [1105]  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  0  1  0  1  0  0  0  0  1
## [1129]  1  0  1  1  1  0  1  1  1  1  0  1  0  1  0  1  1  1  1  1  1  1  0  0
## [1153]  1  0  1  1  1  0  1  1  1  1  0  1  1  1  1  1  0  1  1  1  0  1  1  1
## [1177]  1  0  1  0  1  1  0  1  1  0  1  1  0  1  1  1  1  1  1  0  0  1  0  0
## [1201]  1  1  0  1  0  0  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## [1225]  0  1  0  1  0  0  0  0  1  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0
## [1249]  1  1  1  1  1  1  1  1  1  0  1  0  1  0  1  1  1  1  1  1  1  1  1  1
## [1273]  0  1  0  1  1  1  1  0  1  1  1  1  0  0  0  0  0  0  0  0  1  0  1  1
## [1297]  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1321]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1345]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1369]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1393]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1417]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1441]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1465]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1
## [1489]  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1
## [1513]  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1
## [1537]  1  1  1  1  1  1  1  1  1  1  1  0  0  1  1  1  1  0  1  1  1  0  1  1
## [1561]  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  1  1  0  0  1  1  1
## [1585]  1  1  0  1  1  0  0  1  1  1  0  0  1  0  1  1  0  0  0  0  0  0  0  0
## [1609]  1  0  1  0  0  0  0  0  0  0  0  0  0  0  1  1  0  1  1  0  0  0  0  0
## [1633]  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1657]  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  1  0  0  1  1  1  1  0
## [1681]  1  1  1  1  0  1  0  1  1  1  1  0  0  0  0  0  1  0  0  1  1  1  0  1
## [1705]  1  0  0  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0
## [1729]  1  1  1  1  0  1  1  0  0  0  0  1  0  1  1  1  1  1  1  1  1  1  1  1
## [1753]  1  1  1  0  0  0  0  1  1  1  0  0  0  0  0  0  0  1  1  1  0  1  1  1
## [1777]  1  1  1  1  0  1  1  1  1  1  0  0  1  0  0  0  1  1  1  1  0  1  0  1
## [1801]  1  0  0  1  0  1  1  1  0  1  1  1  1  1  1  1  1  1  0  0  0  1  1  1
## [1825]  1  1  0  1  1  0  0  0  0  1  0  1  1  1  1  1  1  0  0  0  0  0  0  0
## [1849]  0  1  0  0  1  0  0  0  0  0  1  0  1  1  1  1  1  1  0  1  0  0  0  1
## [1873]  1  1  1  1  0  1  1  0  0  1  1  1  0  1  1  1  0  1  1  1  1  1  1  0
## [1897]  0  1  1  1  0  1  1  1  1  1  0  1  1  1  1  1  0  1  1  1  1  1  0  1
## [1921]  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1945]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1969]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1993]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2017]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2041]  0  0  0  0  0  0  0 NA  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2065]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  0
## [2089]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2113]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2137]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2161]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2185]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2209]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2233]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2257]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2281]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2305]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2329]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2353]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1
## [2377]  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  0  0
## [2401]  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2425]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2449]  0  0  0  1  0  1  0  1  1  1  1  1  1  1  0  0  1  1  1  0  0  1  1  1
## [2473]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [2497]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [2521]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  0
## [2545]  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
## [2569]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2593]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2617]  0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
## [2641]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2665]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2689]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2713]  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2737]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2761]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
## [2785]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
## [2809]  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2833]  0  0  1  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2857]  1  1  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  1  1
## [2881]  1  1  0  0  0  0  0  1  0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  0
## [2905]  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
## [2929]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2953]  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [2977]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
## [3001]  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3025]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3049]  0  0  1  0  1  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  1  0  1  0
## [3073]  0  1  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3097]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3121]  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
## [3145]  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3169]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
## [3193]  0  0  0  0  0  0  1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
## [3217]  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3241]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
## [3265]  0  0  0  1  1  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  1  0  0
## [3289]  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0
## [3313]  0  0  1  1  0  1  1  0  1  1  0  0  0  0  0  0  0  0  0  0  0  1  0  0
## [3337]  1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  1  0  0  0
## [3361]  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3385]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3409]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3433]  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3457]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1
## [3481]  1  1  1  1  1  1  0  1  0  1  0  0  1  1  1  1  0  0  0  0  0  0  0  0
## [3505]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3529]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3553]  0  0  0  0  1  1  1  1  1  0  1  0  0  1  0  1  0  1  1  0  1  0  0  0
## [3577]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3601]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3625]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3649]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3673]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3697]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3721]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3745]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3769]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3793]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3817]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3841]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3865]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [3889]  0  0  0  0  0  0  0  0  0  0  0 NA NA NA NA NA NA NA NA  0 NA NA NA NA
## [3913]  0 NA NA  0 NA  0 NA NA NA  0 NA NA NA  0  0 NA NA  0  0  0  0  0  0  0
## [3937]  0  0  0 NA  0  0  0  0  0 NA NA  0  0  0  0  0  0  0  0  1  1  0  1  1
## [3961]  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
## [3985]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0
## [4009]  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  0  0  0
## [4033]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
## [4057]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
## [4081]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4105]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4129]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
## [4153]  0  1  0  1  0  0  0  1  0  0  1  0  0  0  0  0  1  0  1  1  0  0  0  0
## [4177]  1  0  0  0  0  0  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  1
## [4201]  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  1  0  1  0  0  1  0  0
## [4225]  0  1  0  0  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
## [4249]  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  1  1  0  1  0  0  1  0  0
## [4273]  0  0  1  1  1  0  1  1  1  0  1  0  0  1  1  1  1  1  1  1  0  0  1  1
## [4297]  1  1  0  0  1  0  1  0  0  1  0  0  0  1  1  1  0  0  0  1  1  0  0  0
## [4321]  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4345]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  1  1
## [4369]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0
## [4393]  1  1  0  0  0  0  1  1  1  1  1  1  1  0  0  0  0  1  0  0  1  0  0  0
## [4417]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## [4441]  0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  0  1  0  0  0  0  0  0  1
## [4465]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  1  0  1  0  1  1
## [4489]  1  0  0  0  0  1  1  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  1
## [4513]  1  1  1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  1  1  1  0  1
## [4537]  1  0  1  0  0  0  0  1  0  1  1  1  0  1  0  1  1  1  1  1  0  0  0  0
## [4561]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4585]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4609]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4633]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
## [4657]  0  1  1  0  0  1  0  0  0  0  1  0  0  1  1  1  1  0  1  1  1  1  1  1
## [4681]  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [4705]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [4729]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  1  0  0  0  0  0
## [4753]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4777]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4801]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4825]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1
## [4849]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4873]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 NA  0  0  0
## [4897]  0  0  0  0  0  0 NA  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4921]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4945]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4969]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [4993]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5017]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5041]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5065]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5089]  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1
## [5113]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1
## [5137]  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
## [5161]  1  1  1  1  1  1  1  1  1  1  0  1  0  0  0  1  1  1  1  0  1  1  0  0
## [5185]  0  1  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  0  1  1  0  0  1  1
## [5209]  1  0  1  0  1  0  1  1  1  0  0  0  1  1  1  1  0  1  1  1  1  1  1  1
## [5233]  1  1  1  1  0  1  0  1  1  1  1  0  1  0  1  1  1  1  1  1  0  0  0  1
## [5257]  1  1  1  1  0  1  1  1  1  1  1  0  0  1  0  1  1  1  1  1  1  1  1  1
## [5281]  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  1
## [5305]  1  1  1  0  1  0  1  1  1  1  1  0  1  1  1  1  1  1  0  1  0  0  0  1
## [5329]  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1  1  0  1  1
## [5353]  1  1  1  0  0  0  0  1  0  0  0  1  1  0  1  1  1  1  1  1  1  1  1  0
## [5377]  0  1  1  1  1  0  1  0  1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1
## [5401]  1  1  1  1  1  0  1  1  1  0  0  0  1  0  0  0  1  1  1  1  1  1  1  1
## [5425]  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1  0  1  0  1
## [5449]  1  1  1  1  0  1  1  0  1  1  1  1  1  1  1  1  0  1  1  1  1  1  1  1
## [5473]  1  1  1  1  1  1  1  0  1  1  1  0  1  1  1  1  0  1  1  1  1  0  1  1
## [5497]  1  1  1  1  1  1  1  0  1  1  0  1  1  1  1  1  1  1  1  0  1  0  0  0
## [5521]  1  0  0  1  0  0  0  0  1  1  1  0  1  0  0  0  1  1  1  1  1  1  1  1
## [5545]  1  0  1  0  0  1  1  1  0  0  0  1  0  0  0  0  0  1  0  0  0  0  0  0
## [5569]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5593]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5617]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  0  0
## [5641]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  0  0  0  0
## [5665]  1  0  1  1  1  0  0  0  0  1  0  1  0  0  1  0  0  0  1  0  0  0  0  0
## [5689]  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5713]  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5737]  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
## [5761]  1  0  1  0  1  0  0  0  0  1  0  1  0  0  0  0  0  0  0  1  0  0  0  0
## [5785]  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5809]  1  1  0  0  0  0  1  1  0  1  1  1  0  0  1  0  1  1  0  1  1  1  1  1
## [5833]  1  0  0  1  1  0  0  0  1  1  1  0  1  1  0  1  1  1  0  1  0  0  0  1
## [5857]  1  0  1  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
## [5881]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [5905]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## [5929]  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  0  0  0  0  0  0  0  0  0
## [5953]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0
## [5977]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  1  0  0  0
## [6001]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0
## [6025]  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6049]  0  0  0  0  0  0  0  0  0  1  1  1  0  1  0  0  0  0  0  0  0  0  0  0
## [6073]  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
## [6097]  0  0  0  0  0  0  1  1  1  0  0  1  1  0  0  1  1  1  0  0  1  1  1  1
## [6121]  1  1  1  1  1  1  1  1  0  0  0  1  1  1  1  0  1  1  1  1  1  0  1  0
## [6145]  1  1  0  0  0  1  1  1  0  0  1  0  1  0  0  0  1  1  1  1  1  1  1  1
## [6169]  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0  1  0  1  1  1  1  1  0  0
## [6193]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6217]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6241]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6265]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6289]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6313]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6337]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6361]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6385]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6409]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6433]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6457]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6481]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6505]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6529]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6553]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [6577]  0  0  0 NA  1  1  0  0  1  1  1  0  0  1  0  0  1  1  0  1  0  0  0  1
## [6601]  1  1  1  1  1  0  0  0  1  0  0  1  0  0  1  1  1  1  1  0  0  0  0  0
## [6625]  0  0  1  0  0  0  1  1  1  1  1  0  0  0  0  1  1  1  1  1  1  0  0  0
## [6649]  0  0  0  0  1  0  0  1  1  1  1  1  0  1  1  1  0  0  0  1  1  1  1  1
## [6673]  1  1  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0  0  0  1 NA NA  0 NA
## [6697]  0 NA NA  0  0 NA NA NA NA NA  0 NA NA NA NA  0 NA NA  0  0 NA  0 NA  0
## [6721]  0 NA  0  0 NA  0 NA NA NA NA NA  0 NA NA NA NA NA NA NA  1 NA NA NA  0
## [6745] NA  0 NA NA  0 NA NA NA NA NA NA NA NA NA NA  0 NA NA NA  0  0  0  0  0
## [6769]  0  0  0  0 NA  0  0  0  0  0  0  0  0  0  0  1  0  1  1  0  0  0  1  1
## [6793]  1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1  1  1  1  0  0  0  0
## [6817]  0  0  0  0  0 NA  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 NA  0  0
## [6841]  0  0  0  0  0  1  0  0  1  0  0  1  1  1  1  1  0  0  0  1  0  1  0  0
## [6865]  0  1  1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  1  0  1  1  1  0
## [6889]  1  0  1  0  1  0  0  1  1  1  1  1  1  0  0  1  0  0  0  1  1  0  0  0
## [6913]  1  1  1  0  1  1  1  1  0  1  1  0  0  0  0  0  0  0  0  0  1  0  0  1
## [6937]  1  0  0  1  1  1  1  1  1  1  1  1  1  0  1  1  1  0  1  1  1  1  1  0
## [6961]  0  0  0  1  1  0  0  0  1  1  1  1  1  0  0  0  0  1  0  0  0  0  1  1
## [6985]  1  1  1  0  1  0  0  0  0  0  0  0  1  1  0  1  1  0  1  0  0  1  1  0
## [7009]  0  1  0  1  0  0  1  1  1  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0
## [7033]  1  1  1  0  0  0  0  1  1  0  0  1  1  1  0  0  0  1  1  1  0  0  1  1
## [7057]  0  0
# Then insert this into a new column
USDA$HiSodium <- as.numeric(USDA$Sodium > mean(USDA$Sodium, na.rm = TRUE))
str(USDA)
## 'data.frame':    7058 obs. of  17 variables:
##  $ ID          : int  1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ...
##  $ Description : chr  "BUTTER,WITH SALT" "BUTTER,WHIPPED,WITH SALT" "BUTTER OIL,ANHYDROUS" "CHEESE,BLUE" ...
##  $ Calories    : int  717 717 876 353 371 334 300 376 403 387 ...
##  $ Protein     : num  0.85 0.85 0.28 21.4 23.24 ...
##  $ TotalFat    : num  81.1 81.1 99.5 28.7 29.7 ...
##  $ Carbohydrate: num  0.06 0.06 0 2.34 2.79 0.45 0.46 3.06 1.28 4.78 ...
##  $ Sodium      : int  714 827 2 1395 560 629 842 690 621 700 ...
##  $ SaturatedFat: num  51.4 50.5 61.9 18.7 18.8 ...
##  $ Cholesterol : int  215 219 256 75 94 100 72 93 105 103 ...
##  $ Sugar       : num  0.06 0.06 0 0.5 0.51 0.45 0.46 NA 0.52 NA ...
##  $ Calcium     : int  24 24 4 528 674 184 388 673 721 643 ...
##  $ Iron        : num  0.02 0.16 0 0.31 0.43 0.5 0.33 0.64 0.68 0.21 ...
##  $ Potassium   : int  24 26 5 256 136 152 187 93 98 95 ...
##  $ VitaminC    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ VitaminE    : num  2.32 2.32 2.8 0.25 0.26 0.24 0.21 NA 0.29 NA ...
##  $ VitaminD    : num  1.5 1.5 1.8 0.5 0.5 0.5 0.4 NA 0.6 NA ...
##  $ HiSodium    : num  1 1 0 1 1 1 1 1 1 1 ...
# and do the same for other variables
USDA$HiProtein <- as.numeric(USDA$Protein > mean(USDA$Protein, na.rm = TRUE))
USDA$HiFat <- as.numeric(USDA$TotalFat > mean(USDA$TotalFat, na.rm = TRUE))
USDA$HiCarbs <- as.numeric(USDA$Carbohydrate > mean(USDA$Carbohydrate, na.rm = TRUE))
str(USDA)
## 'data.frame':    7058 obs. of  20 variables:
##  $ ID          : int  1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 ...
##  $ Description : chr  "BUTTER,WITH SALT" "BUTTER,WHIPPED,WITH SALT" "BUTTER OIL,ANHYDROUS" "CHEESE,BLUE" ...
##  $ Calories    : int  717 717 876 353 371 334 300 376 403 387 ...
##  $ Protein     : num  0.85 0.85 0.28 21.4 23.24 ...
##  $ TotalFat    : num  81.1 81.1 99.5 28.7 29.7 ...
##  $ Carbohydrate: num  0.06 0.06 0 2.34 2.79 0.45 0.46 3.06 1.28 4.78 ...
##  $ Sodium      : int  714 827 2 1395 560 629 842 690 621 700 ...
##  $ SaturatedFat: num  51.4 50.5 61.9 18.7 18.8 ...
##  $ Cholesterol : int  215 219 256 75 94 100 72 93 105 103 ...
##  $ Sugar       : num  0.06 0.06 0 0.5 0.51 0.45 0.46 NA 0.52 NA ...
##  $ Calcium     : int  24 24 4 528 674 184 388 673 721 643 ...
##  $ Iron        : num  0.02 0.16 0 0.31 0.43 0.5 0.33 0.64 0.68 0.21 ...
##  $ Potassium   : int  24 26 5 256 136 152 187 93 98 95 ...
##  $ VitaminC    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ VitaminE    : num  2.32 2.32 2.8 0.25 0.26 0.24 0.21 NA 0.29 NA ...
##  $ VitaminD    : num  1.5 1.5 1.8 0.5 0.5 0.5 0.4 NA 0.6 NA ...
##  $ HiSodium    : num  1 1 0 1 1 1 1 1 1 1 ...
##  $ HiProtein   : num  0 0 0 1 1 1 1 1 1 1 ...
##  $ HiFat       : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ HiCarbs     : num  0 0 0 0 0 0 0 0 0 0 ...

Creating a summary table from our previous results

We can now summarize our analysis and present them in a chart.

table(USDA$HiSodium, USDA$HiFat)
##    
##        0    1
##   0 3529 1355
##   1 1378  712

Looking for specifics: Food that contains iron, can we calculate their average iron contents based on two groups of Hi Protein?

Yes, why not! We use tapply for that.

tapply(USDA$Iron, USDA$HiProtein, mean, na.rm = TRUE)
##        0        1 
## 2.558945 3.197294
# With the same approach, to find max vit C between hi carb/ lo carb food
tapply(USDA$VitaminC , USDA$HiCarbs, max, na.rm = TRUE)
##      0      1 
## 1677.6 2400.0
# we can even use summary!
tapply(USDA$VitaminC , USDA$HiCarbs, summary, na.rm = TRUE)
## $`0`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##    0.000    0.000    0.000    6.364    2.800 1677.600      248 
## 
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00    0.00    0.20   16.31    4.50 2400.00      83