1 Brief Introduction

Please watching this video, to get some ideas about Confidence Intervals (CI)

2 CI in Business

This video guide you, how can you apply Confidence Intervals in Business.

3 Your Exercise

In this section, your expected to get familiar with confidential intervals exercise:

3.1 Exercise 1

Find a point estimate of average university student Age with the sample data from survey!

## [1] 20.37451

From MASS package we get the survey data. After that, we use mean function to get the point estimate of age student.

3.2 Exercise 2

Assume the population standard deviation \(\sigma\) of the student Age in data survey is 7. Find the margin of error and interval estimate at 95% confidence level.

## [1] 0.8911934
## [1] 20.37451
## [1] 19.48332 21.26571

First we have to use na.omit function to filter out missing values in Age. After that, we can find the standard error of the mean from sigma/sqrt(n). Finally we can get the error value by multiplying 1.96 or qnorm(0.975) with standard error of the mean .

3.3 Exercise 3

Without assuming the population standard deviation \(\sigma\) of the student Age in survey, find the margin of error and interval estimate at 95% confidence level.

## [1] 0.8957872
## [1] 20.37451
## [1] 19.47873 21.27030

First we have to use na.omit function to filter out missing values in Age. After that, we can find the standard error estimate from s/sqrt(n). Now we can get the margin of error by multiplying qt(.975, df=n-1) with standard error estimate.

3.4 Exercise 4

Improve the quality of a sample survey by increasing the sample size with unknown standard deviation \(\sigma\)!.

Please explain something from your exercise result.

3.5 Exercise 5

Assume you don’t have planned proportion estimate, find the sample size needed to achieve 5% margin of error for the male student survey at 95% confidence level!

## [1] 118
## [1] 0.5
## [1] 384.1459

Please explain something from your exercise result.

3.6 Exercise 6

Perform confidence intervals analysis on this data set from 2004 that includes data on average hourly earnings, marital status, gender, and age for thousands of people.

LS0tDQp0aXRsZTogIktvbXB1dGFzaSBTdGF0aXN0aWsiDQphdXRob3I6ICJZZWhlemtpZWwiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KICAgIHRoZW1lOiBzcGFjZWxhYg0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KLS0tDQoNCmBgYHtyIExvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnNDAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJtYXRhbmEucG5nIikNCmBgYA0KDQojIEJyaWVmIEludHJvZHVjdGlvbiANCg0KUGxlYXNlIHdhdGNoaW5nIHRoaXMgdmlkZW8sIHRvIGdldCBzb21lIGlkZWFzIGFib3V0IENvbmZpZGVuY2UgSW50ZXJ2YWxzIChDSSkNCg0KPGNlbnRlcj4NCjxpZnJhbWUgd2lkdGg9IjgwMCIgaGVpZ2h0PSI0NTAiIHNyYz0iaHR0cHM6Ly93d3cueW91dHViZS5jb20vZW1iZWQvTWJYVGhiVFNyVkkiIGZyYW1lYm9yZGVyPSIwIiBhbGxvdz0iYWNjZWxlcm9tZXRlcjsgYXV0b3BsYXk7IGVuY3J5cHRlZC1tZWRpYTsgZ3lyb3Njb3BlOyBwaWN0dXJlLWluLXBpY3R1cmUiIGFsbG93ZnVsbHNjcmVlbj48L2lmcmFtZT4NCjwvY2VudGVyPg0KDQoNCiMgQ0kgaW4gQnVzaW5lc3MgDQoNClRoaXMgdmlkZW8gZ3VpZGUgeW91LCBob3cgY2FuIHlvdSBhcHBseSBDb25maWRlbmNlIEludGVydmFscyBpbiBCdXNpbmVzcy4NCg0KPGNlbnRlcj4NCjxpZnJhbWUgd2lkdGg9IjgwMCIgaGVpZ2h0PSI0NTAiIHNyYz0iaHR0cHM6Ly93d3cueW91dHViZS5jb20vZW1iZWQvX0pHQUxldE1jam8iIGZyYW1lYm9yZGVyPSIwIiBhbGxvdz0iYWNjZWxlcm9tZXRlcjsgYXV0b3BsYXk7IGVuY3J5cHRlZC1tZWRpYTsgZ3lyb3Njb3BlOyBwaWN0dXJlLWluLXBpY3R1cmUiIGFsbG93ZnVsbHNjcmVlbj48L2lmcmFtZT4NCjwvY2VudGVyPg0KDQoNCiMgWW91ciBFeGVyY2lzZSANCg0KSW4gdGhpcyBzZWN0aW9uLCB5b3VyIGV4cGVjdGVkIHRvIGdldCBmYW1pbGlhciB3aXRoIGNvbmZpZGVudGlhbCBpbnRlcnZhbHMgZXhlcmNpc2U6IA0KDQojIyBFeGVyY2lzZSAxDQoNCkZpbmQgYSBwb2ludCBlc3RpbWF0ZSBvZiBhdmVyYWdlIHVuaXZlcnNpdHkgc3R1ZGVudCBgQWdlYCB3aXRoIHRoZSBzYW1wbGUgZGF0YSBmcm9tIGBzdXJ2ZXlgIQ0KDQpgYGB7cn0NCiMgU3VydmV5IGRhdGEgZnJvbSBNQVNTIHBhY2thZ2UNCmxpYnJhcnkoTUFTUykNCg0KIyBUaGUgcG9pbnQgZXN0aW1hdGUgb2YgYXZlcmFnZSB1bml2ZXJzaXR5IHN0dWRlbnQgYEFnZWANCm1lYW4oc3VydmV5JEFnZSkNCmBgYA0KDQpgRnJvbSBNQVNTIHBhY2thZ2Ugd2UgZ2V0IHRoZSBzdXJ2ZXkgZGF0YS4gQWZ0ZXIgdGhhdCwgd2UgdXNlIG1lYW4gZnVuY3Rpb24gdG8gZ2V0IHRoZSBwb2ludCBlc3RpbWF0ZSBvZiBhZ2Ugc3R1ZGVudC5gDQoNCiMjIEV4ZXJjaXNlIDINCg0KQXNzdW1lIHRoZSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiAkXHNpZ21hJCBvZiB0aGUgc3R1ZGVudCBgQWdlYCBpbiBkYXRhIGBzdXJ2ZXlgIGlzIDcuIEZpbmQgdGhlIG1hcmdpbiBvZiBlcnJvciBhbmQgaW50ZXJ2YWwgZXN0aW1hdGUgYXQgOTUlIGNvbmZpZGVuY2UgbGV2ZWwuDQoNCmBgYHtyfQ0KQWdlLnJlc3AgPSBuYS5vbWl0KHN1cnZleSRBZ2UpICAgICAgICAjIGZpbHRlciBvdXQgbWlzc2luZyB2YWx1ZXMgaW4gQWdlDQpuID0gbGVuZ3RoKEFnZS5yZXNwKSAgICAgICAgICAgICAgICAgICMgYXNzaWduIHRoZSBsZW5ndGggb2YgcmVzcG9uc2UNCnNpZ21hID0gNyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiANCnNlbSA9IHNpZ21hL3NxcnQobikgICAgICAgICAgICAgICAgICAgIyBzdGFuZGFyZCBlcnJvciBvZiB0aGUgbWVhbg0KRSA9IHFub3JtKC45NzUpKnNlbSA7RSAgICAgICAgICAgICAgICAjIG1hcmdpbiBvZiBlcnJvciAodXBwZXIgdGFpbCA5NSUgb2YgQ0kpDQoNCnhiYXIgPC0gbWVhbihBZ2UucmVzcCk7IHhiYXINCnhiYXIgKyBjKC1FLCBFKQ0KYGBgDQoNCmBGaXJzdCB3ZSBoYXZlIHRvIHVzZSBuYS5vbWl0IGZ1bmN0aW9uIHRvIGZpbHRlciBvdXQgbWlzc2luZyB2YWx1ZXMgaW4gQWdlLiBBZnRlciB0aGF0LCB3ZSBjYW4gZmluZCB0aGUgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIG1lYW4gZnJvbSBzaWdtYS9zcXJ0KG4pLiBGaW5hbGx5IHdlIGNhbiBnZXQgdGhlIGVycm9yIHZhbHVlIGJ5IG11bHRpcGx5aW5nIDEuOTYgb3IgcW5vcm0oMC45NzUpIHdpdGggc3RhbmRhcmQgZXJyb3Igb2YgdGhlIG1lYW4gLmANCg0KIyMgRXhlcmNpc2UgMw0KDQpXaXRob3V0IGFzc3VtaW5nIHRoZSBwb3B1bGF0aW9uIHN0YW5kYXJkIGRldmlhdGlvbiAkXHNpZ21hJCBvZiB0aGUgc3R1ZGVudCBgQWdlYCBpbiBzdXJ2ZXksIGZpbmQgdGhlIG1hcmdpbiBvZiBlcnJvciBhbmQgaW50ZXJ2YWwgZXN0aW1hdGUgYXQgOTUlIGNvbmZpZGVuY2UgbGV2ZWwuDQoNCmBgYHtyfQ0KQWdlLnJlc3AgPSBuYS5vbWl0KHN1cnZleSRBZ2UpICAgICAgICAjIGZpbHRlciBvdXQgbWlzc2luZyB2YWx1ZXMgaW4gQWdlDQpuID0gbGVuZ3RoKEFnZS5yZXNwKSAgICAgICAgICAgICAgICAgICMgYXNzaWduIHRoZSBsZW5ndGggb2YgcmVzcG9uc2UNCnMgPSA3ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBzYW1wbGUgc3RhbmRhcmQgZGV2aWF0aW9uIA0KU0UgPSBzL3NxcnQobikgICAgICAgICAgICAgICAgICAgICAgICAjIHN0YW5kYXJkIGVycm9yIGVzdGltYXRlDQpFID0gcXQoLjk3NSwgZGY9bi0xKSpTRTsgRSAgICAgICAgICAgICMgbWFyZ2luIG9mIGVycm9yICh1cHBlciB0YWlsIDk1JSBvZiBDSSkNCg0KeGJhciA8LSBtZWFuKEFnZS5yZXNwKTsgeGJhcg0KeGJhciArIGMoLUUsIEUpDQpgYGANCg0KYEZpcnN0IHdlIGhhdmUgdG8gdXNlIG5hLm9taXQgZnVuY3Rpb24gdG8gZmlsdGVyIG91dCBtaXNzaW5nIHZhbHVlcyBpbiBBZ2UuIEFmdGVyIHRoYXQsIHdlIGNhbiBmaW5kIHRoZSBzdGFuZGFyZCBlcnJvciBlc3RpbWF0ZSBmcm9tIHMvc3FydChuKS4gTm93IHdlIGNhbiBnZXQgdGhlIG1hcmdpbiBvZiBlcnJvciBieSBtdWx0aXBseWluZyBxdCguOTc1LCBkZj1uLTEpIHdpdGggc3RhbmRhcmQgZXJyb3IgZXN0aW1hdGUuYA0KDQojIyBFeGVyY2lzZSA0DQoNCkltcHJvdmUgdGhlIHF1YWxpdHkgb2YgYSBzYW1wbGUgYHN1cnZleWAgYnkgaW5jcmVhc2luZyB0aGUgc2FtcGxlIHNpemUgd2l0aCB1bmtub3duIHN0YW5kYXJkIGRldmlhdGlvbiAkXHNpZ21hJCEuDQoNCmBgYHtyfQ0KDQpgYGANCg0KYFBsZWFzZSBleHBsYWluIHNvbWV0aGluZyBmcm9tIHlvdXIgZXhlcmNpc2UgcmVzdWx0LmANCg0KIyMgRXhlcmNpc2UgNQ0KDQpBc3N1bWUgeW91IGRvbuKAmXQgaGF2ZSBwbGFubmVkIHByb3BvcnRpb24gZXN0aW1hdGUsIGZpbmQgdGhlIHNhbXBsZSBzaXplIG5lZWRlZCB0byBhY2hpZXZlIDUlIG1hcmdpbiBvZiBlcnJvciBmb3IgdGhlIG1hbGUgc3R1ZGVudCBgc3VydmV5YCBhdCA5NSUgY29uZmlkZW5jZSBsZXZlbCENCg0KYGBge3J9DQpnZW5kZXIucmVzcG9uc2UgPSBuYS5vbWl0KHN1cnZleSRTZXgpDQpuID0gbGVuZ3RoKGdlbmRlci5yZXNwb25zZSkNCm1hbGUgPSBzdW0oZ2VuZGVyLnJlc3BvbnNlID09ICJNYWxlIik7IG1hbGUNCnBiYXIgID0gbWFsZS9uO3BiYXINCg0KenN0YXIgPSBxbm9ybSgwLjk3NSkNCnA9MC41DQoNCiMgTWFyZ2luIG9yIGVycm9yDQpFID0gMC4wNQ0KenN0YXJeMipwKigxLXApL0VeMg0KYGBgDQoNCmBQbGVhc2UgZXhwbGFpbiBzb21ldGhpbmcgZnJvbSB5b3VyIGV4ZXJjaXNlIHJlc3VsdC5gDQoNCiMjIEV4ZXJjaXNlIDYNCg0KUGVyZm9ybSBjb25maWRlbmNlIGludGVydmFscyBhbmFseXNpcyBvbiB0aGlzIFtkYXRhIHNldF0oaHR0cDovL211cnJheWxheC5vcmcvZGF0YXNldHMvY3BzMDQuY3N2KSBmcm9tIDIwMDQgdGhhdCBpbmNsdWRlcyBkYXRhIG9uIGF2ZXJhZ2UgaG91cmx5IGVhcm5pbmdzLCBtYXJpdGFsIHN0YXR1cywgZ2VuZGVyLCBhbmQgYWdlIGZvciB0aG91c2FuZHMgb2YgcGVvcGxlLg0KDQo=