fL<-"https://math.montana.edu/shancock/data/Framingham.txt"
#input data
dta <- read.table(fL, header=T)
dta$sex <- factor(dta$sex,
levels=c(1, 2),
labels=c("M", "F"))
library(lattice)
xyplot(sbp ~ dbp | sex,
data=dta, cex=.5,
type=c("p","g","r"),
xlab="Diastolic pressure (mmHg)",
ylab="Systolic pressure (mmHg)")
m0 <- lm(sbp ~ dbp, data=dta)
m1 <- lm(sbp ~ dbp + sex, data=dta)
m2 <- lm(sbp ~ dbp + sex + sex:dbp, data=dta)
anova(m0, m1, m2)
## Analysis of Variance Table
##
## Model 1: sbp ~ dbp
## Model 2: sbp ~ dbp + sex
## Model 3: sbp ~ dbp + sex + sex:dbp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 4697 941778
## 2 4696 927853 1 13925 71.800 < 2.2e-16 ***
## 3 4695 910543 1 17310 89.256 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model 2和Model3之F檢定結果係數不為零,且達顯著水準。 當sex=1時,Model 3: sbp ~ dbp + 1 + 1*dbp。 當sex=0時,Model 3: sbp ~ dbp,也就等於Model 1。 這兩個式子相減等於1 + dbp,也就是類別變數sex的作用。
plot(rstandard(m2) ~ fitted(m2),
cex=.5,
xlab="Fitted values",
ylab="Standardized residuals")
grid()