Preparação dos dados

Carrega as bibliotecas.

library(tidyverse, readxl)
## -- Attaching packages -------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.3     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(faraway)
library(mctest, REdaS)
library(psych, corrgram)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:faraway':
## 
##     logit
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha

Importa a tabela ‘tab_original.xlsx’.

tbl <- readxl::read_excel('tab_original.xlsx', sheet = 'Smart PLS', col_names = TRUE)
tbl %>% head()
## # A tibble: 6 x 79
##     P_1   P_2   P_3   P_4   P_5   P_6   P_7   P_8   P_9  P_10  P_11  P_12  P_13
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     6     1     1     2     1     5     1     9     5     5     5     0     0
## 2     4     1     2     8     4     1     2     0     0     0     0     5     5
## 3     5     1     1     8     2     1     1     3     5     5     4     0     0
## 4     4     1     2     6     1     4     1     8     4     5     3     0     0
## 5     4     1     2     8     3     1     1     1     2     3     4     0     0
## 6     2     1     1     6     7     1     2     0     0     0     0     4     3
## # ... with 66 more variables: P_14 <dbl>, P_15 <dbl>, P_16 <dbl>, P_17 <dbl>,
## #   P_18 <dbl>, P_19 <dbl>, P_20 <dbl>, P_21 <dbl>, P_22 <dbl>, P_23 <dbl>,
## #   P_24 <dbl>, P_25 <dbl>, P_26 <dbl>, P_27 <dbl>, P_28 <dbl>, P_29 <dbl>,
## #   P_30 <dbl>, P_31 <dbl>, P_32 <dbl>, P_33 <dbl>, P_34 <dbl>, P_35 <dbl>,
## #   P_36 <dbl>, P_37 <dbl>, P_38 <dbl>, P_39 <dbl>, P_40 <dbl>, P_41 <dbl>,
## #   P_42 <dbl>, P_43 <dbl>, P_44 <dbl>, P_45 <dbl>, P_46 <dbl>, P_47 <dbl>,
## #   P_48 <dbl>, P_49 <dbl>, P_50 <dbl>, P_51 <dbl>, P_52 <dbl>, P_53 <dbl>,
## #   P_54 <dbl>, P_55 <dbl>, P_56 <dbl>, P_57 <dbl>, P_58 <dbl>, P_59 <dbl>,
## #   P_60 <dbl>, P_61 <dbl>, P_62 <dbl>, P_63 <dbl>, P_64 <dbl>, P_65 <dbl>,
## #   P_66 <dbl>, P_67 <dbl>, P_68 <dbl>, P_69 <dbl>, P_70 <dbl>, P_71 <dbl>,
## #   P_72 <dbl>, P_73 <dbl>, P_74 <dbl>, P_75 <dbl>, P_76 <dbl>, P_77 <dbl>,
## #   P_78 <dbl>, P_79 <dbl>

Exclui as variáveis dicotômicas

dic <- apply(tbl, 2 , function(x) length(unique(x)))
tbl <- tbl[dic > 2]
tbl %>% head()
## # A tibble: 6 x 75
##     P_1   P_3   P_4   P_5   P_6   P_8   P_9  P_10  P_11  P_12  P_13  P_14  P_15
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     6     1     2     1     5     9     5     5     5     0     0     0     1
## 2     4     2     8     4     1     0     0     0     0     5     5     3     4
## 3     5     1     8     2     1     3     5     5     4     0     0     0     4
## 4     4     2     6     1     4     8     4     5     3     0     0     0     1
## 5     4     2     8     3     1     1     2     3     4     0     0     0     4
## 6     2     1     6     7     1     0     0     0     0     4     3     5     4
## # ... with 62 more variables: P_16 <dbl>, P_17 <dbl>, P_18 <dbl>, P_19 <dbl>,
## #   P_20 <dbl>, P_21 <dbl>, P_22 <dbl>, P_23 <dbl>, P_24 <dbl>, P_25 <dbl>,
## #   P_26 <dbl>, P_27 <dbl>, P_28 <dbl>, P_29 <dbl>, P_30 <dbl>, P_31 <dbl>,
## #   P_32 <dbl>, P_33 <dbl>, P_34 <dbl>, P_35 <dbl>, P_36 <dbl>, P_37 <dbl>,
## #   P_38 <dbl>, P_39 <dbl>, P_40 <dbl>, P_41 <dbl>, P_42 <dbl>, P_43 <dbl>,
## #   P_44 <dbl>, P_45 <dbl>, P_46 <dbl>, P_47 <dbl>, P_48 <dbl>, P_49 <dbl>,
## #   P_50 <dbl>, P_51 <dbl>, P_53 <dbl>, P_54 <dbl>, P_55 <dbl>, P_56 <dbl>,
## #   P_57 <dbl>, P_58 <dbl>, P_59 <dbl>, P_60 <dbl>, P_61 <dbl>, P_62 <dbl>,
## #   P_63 <dbl>, P_64 <dbl>, P_65 <dbl>, P_66 <dbl>, P_68 <dbl>, P_69 <dbl>,
## #   P_70 <dbl>, P_71 <dbl>, P_72 <dbl>, P_73 <dbl>, P_74 <dbl>, P_75 <dbl>,
## #   P_76 <dbl>, P_77 <dbl>, P_78 <dbl>, P_79 <dbl>

Matriz de correlação

corrgram::corrgram(tbl)
## Registered S3 method overwritten by 'seriation':
##   method         from 
##   reorder.hclust gclus

Cria o modelo a ser usado no mctest

model <- lm(P_1 ~ ., data = tbl)
model 
## 
## Call:
## lm(formula = P_1 ~ ., data = tbl)
## 
## Coefficients:
## (Intercept)          P_3          P_4          P_5          P_6          P_8  
##    5.284283    -0.073855    -0.148068    -0.012099    -0.051932     0.043514  
##         P_9         P_10         P_11         P_12         P_13         P_14  
##   -0.063481    -0.057544     0.069687    -0.174099     0.276800    -0.093203  
##        P_15         P_16         P_17         P_18         P_19         P_20  
##    0.096694    -0.096822    -0.137834     0.025379    -0.001105     0.077685  
##        P_21         P_22         P_23         P_24         P_25         P_26  
##    0.060070     0.038402     0.100166    -0.031177    -0.052533    -0.108953  
##        P_27         P_28         P_29         P_30         P_31         P_32  
##    0.009842     0.123310    -0.016657    -0.075152    -0.051841     0.015814  
##        P_33         P_34         P_35         P_36         P_37         P_38  
##   -0.176015    -0.036312     0.064731     0.121074    -0.070185     0.073359  
##        P_39         P_40         P_41         P_42         P_43         P_44  
##    0.025058     0.092729    -0.122805    -0.091059     0.013593     0.023774  
##        P_45         P_46         P_47         P_48         P_49         P_50  
##   -0.046259     0.023929    -0.008753    -0.036432    -0.009143    -0.077839  
##        P_51         P_53         P_54         P_55         P_56         P_57  
##    0.048981    -0.074096     0.205010    -0.173324     0.110143     0.311208  
##        P_58         P_59         P_60         P_61         P_62         P_63  
##   -0.235184    -0.043171     0.051951     0.052429     0.105853    -0.074767  
##        P_64         P_65         P_66         P_68         P_69         P_70  
##   -0.062948     0.009030    -0.140781     0.019261     0.032148     0.016219  
##        P_71         P_72         P_73         P_74         P_75         P_76  
##    0.011490     0.110215     0.210453    -0.146429     0.056886    -0.035356  
##        P_77         P_78         P_79  
##   -0.066597     0.092640    -0.014365

Testes

Teste VIF

Apenas valores VIF sem indicador de detecção de colinearidade

imcdiag(model, method = "VIF")[[1]][,1]
##       P_3       P_4       P_5       P_6       P_8       P_9      P_10      P_11 
##  1.280837  1.701344  1.751916  1.769911  2.150123  9.460445  9.155176  5.499082 
##      P_12      P_13      P_14      P_15      P_16      P_17      P_18      P_19 
## 19.737630 24.172171 17.689998  2.706908  1.872850  2.268241  1.479695  2.140138 
##      P_20      P_21      P_22      P_23      P_24      P_25      P_26      P_27 
##  2.102043  1.616254  1.456113  1.774922  1.407576  1.313954  2.451584  2.253264 
##      P_28      P_29      P_30      P_31      P_32      P_33      P_34      P_35 
##  1.735719  1.471236  1.280464  2.065862  3.033934  2.468182  1.712952  2.854578 
##      P_36      P_37      P_38      P_39      P_40      P_41      P_42      P_43 
##  2.629395  1.886829  2.591568  2.059173  1.922440  1.910857  1.979173  1.614549 
##      P_44      P_45      P_46      P_47      P_48      P_49      P_50      P_51 
##  1.873505  2.345103  1.954906  2.211515  2.224966  1.654716  2.254212  2.301507 
##      P_53      P_54      P_55      P_56      P_57      P_58      P_59      P_60 
##  4.033018 11.769492 10.733405  6.002374 26.238822 30.497281 19.617071  2.419087 
##      P_61      P_62      P_63      P_64      P_65      P_66      P_68      P_69 
##  2.124772  2.959910  3.009846  1.810570  1.824741  2.185467  4.500665 17.488273 
##      P_70      P_71      P_72      P_73      P_74      P_75      P_76      P_77 
## 18.322372 13.966168  5.266237  6.381689  4.399652  2.436169  3.115397  2.459926 
##      P_78      P_79 
##  2.770801  2.586188
mctest::imcdiag(model, method = "VIF", vif = 5)
## 
## Call:
## mctest::imcdiag(mod = model, method = "VIF", vif = 5)
## 
## 
##  VIF Multicollinearity Diagnostics
## 
##          VIF detection
## P_3   1.2808         0
## P_4   1.7013         0
## P_5   1.7519         0
## P_6   1.7699         0
## P_8   2.1501         0
## P_9   9.4604         1
## P_10  9.1552         1
## P_11  5.4991         1
## P_12 19.7376         1
## P_13 24.1722         1
## P_14 17.6900         1
## P_15  2.7069         0
## P_16  1.8729         0
## P_17  2.2682         0
## P_18  1.4797         0
## P_19  2.1401         0
## P_20  2.1020         0
## P_21  1.6163         0
## P_22  1.4561         0
## P_23  1.7749         0
## P_24  1.4076         0
## P_25  1.3140         0
## P_26  2.4516         0
## P_27  2.2533         0
## P_28  1.7357         0
## P_29  1.4712         0
## P_30  1.2805         0
## P_31  2.0659         0
## P_32  3.0339         0
## P_33  2.4682         0
## P_34  1.7130         0
## P_35  2.8546         0
## P_36  2.6294         0
## P_37  1.8868         0
## P_38  2.5916         0
## P_39  2.0592         0
## P_40  1.9224         0
## P_41  1.9109         0
## P_42  1.9792         0
## P_43  1.6145         0
## P_44  1.8735         0
## P_45  2.3451         0
## P_46  1.9549         0
## P_47  2.2115         0
## P_48  2.2250         0
## P_49  1.6547         0
## P_50  2.2542         0
## P_51  2.3015         0
## P_53  4.0330         0
## P_54 11.7695         1
## P_55 10.7334         1
## P_56  6.0024         1
## P_57 26.2388         1
## P_58 30.4973         1
## P_59 19.6171         1
## P_60  2.4191         0
## P_61  2.1248         0
## P_62  2.9599         0
## P_63  3.0098         0
## P_64  1.8106         0
## P_65  1.8247         0
## P_66  2.1855         0
## P_68  4.5007         0
## P_69 17.4883         1
## P_70 18.3224         1
## P_71 13.9662         1
## P_72  5.2662         1
## P_73  6.3817         1
## P_74  4.3997         0
## P_75  2.4362         0
## P_76  3.1154         0
## P_77  2.4599         0
## P_78  2.7708         0
## P_79  2.5862         0
## 
## Multicollinearity may be due to P_9 P_10 P_11 P_12 P_13 P_14 P_54 P_55 P_56 P_57 P_58 P_59 P_69 P_70 P_71 P_72 P_73 regressors
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test
## 
## ===================================
plot(imcdiag(model, method = "VIF")[[1]][,1]) # vif plot

Testes MSA e KMO

KMO Interpretação
0,9 a 1,0 Maravilhoso
0,8 a 0,9 Meritório
0,7 a 0,8 Moderado
0,6 a 0,7 Medíocre
0,5 a 0,6 Miserável
menor que 0,5 Inaceitável
kmos <- REdaS::KMOS(tbl)
kmos
## 
## Kaiser-Meyer-Olkin Statistics
## 
## Call: REdaS::KMOS(x = tbl)
## 
## Measures of Sampling Adequacy (MSA):
##       P_1       P_3       P_4       P_5       P_6       P_8       P_9      P_10 
## 0.5944250 0.5709779 0.7480496 0.8836824 0.7431273 0.9169272 0.9300709 0.9242316 
##      P_11      P_12      P_13      P_14      P_15      P_16      P_17      P_18 
## 0.9285846 0.8772543 0.8422984 0.8789042 0.8717969 0.8795182 0.8971371 0.9233417 
##      P_19      P_20      P_21      P_22      P_23      P_24      P_25      P_26 
## 0.9376621 0.9087224 0.7175073 0.5798575 0.8610293 0.9021918 0.5431306 0.8962032 
##      P_27      P_28      P_29      P_30      P_31      P_32      P_33      P_34 
## 0.9096462 0.9210624 0.8575319 0.7624084 0.9028105 0.9183723 0.9484675 0.9069290 
##      P_35      P_36      P_37      P_38      P_39      P_40      P_41      P_42 
## 0.9320596 0.9490864 0.8750290 0.8542774 0.9173987 0.7956620 0.9117840 0.8782026 
##      P_43      P_44      P_45      P_46      P_47      P_48      P_49      P_50 
## 0.9270023 0.8573811 0.8924903 0.9062378 0.7043976 0.7084762 0.8750770 0.9002754 
##      P_51      P_53      P_54      P_55      P_56      P_57      P_58      P_59 
## 0.8943191 0.9617240 0.9206564 0.9263982 0.9343477 0.8674170 0.8334660 0.8929225 
##      P_60      P_61      P_62      P_63      P_64      P_65      P_66      P_68 
## 0.8202236 0.8164335 0.7562597 0.7623357 0.8125158 0.8482612 0.8338416 0.9369205 
##      P_69      P_70      P_71      P_72      P_73      P_74      P_75      P_76 
## 0.8574704 0.8533240 0.8851489 0.8735885 0.8583622 0.8863144 0.9082193 0.9287651 
##      P_77      P_78      P_79 
## 0.9393845 0.9126783 0.8903946 
## 
## KMO-Criterion: 0.8880532

Porcentagem de variáveis em cada faixa.

df <- data.frame(Excelente = round(100*mean(0.9 < kmos$MSA), 2),
                         Meritorio   = round(100*mean(0.8 < kmos$MSA & kmos$MSA <= 0.9), 2),
                         Moderado    = round(100*mean(0.7 < kmos$MSA & kmos$MSA <= 0.8), 2),
                         Mediocre    = round(100*mean(0.6 < kmos$MSA & kmos$MSA <= 0.7), 2),
                         Miseravel   = round(100*mean(0.5 < kmos$MSA & kmos$MSA <= 0.6), 2),
                         Inaceitavel = round(100*mean(kmos$MSA <= 0.5), 2))
df
##   Excelente Meritorio Moderado Mediocre Miseravel Inaceitavel
## 1        40     42.67       12        0      5.33           0

Teste Bartlett

REdaS::bart_spher(tbl)
##  Bartlett's Test of Sphericity
## 
## Call: REdaS::bart_spher(x = tbl)
## 
##      X2 = 30699.744
##      df = 2775
## p-value < 2.22e-16

Outros testes

  1. para determinacao de n. de fatores:
nfactors <- fa.parallel(tbl, plot = FALSE)
## Parallel analysis suggests that the number of factors =  14  and the number of components =  10
nfactors
## Call: fa.parallel(x = tbl, plot = FALSE)
## Parallel analysis suggests that the number of factors =  14  and the number of components =  10 
## 
##  Eigen Values of 
##    Original factors Resampled data Simulated data Original components
## 1             12.00           0.84           0.85               12.71
## 2              7.94           0.77           0.76                8.70
## 3              4.60           0.71           0.72                5.56
## 4              2.72           0.68           0.68                3.62
## 5              2.20           0.64           0.65                3.09
## 6              1.60           0.61           0.61                2.49
## 7              1.13           0.58           0.59                2.03
## 8              0.94           0.56           0.55                1.77
## 9              0.86           0.52           0.52                1.74
## 10             0.79           0.50           0.50                1.70
## 11             0.62           0.48           0.47                1.47
## 12             0.56           0.44           0.45                1.38
## 13             0.52           0.42           0.43                1.34
## 14             0.44           0.40           0.40                1.27
##    Resampled components Simulated components
## 1                  1.80                 1.82
## 2                  1.76                 1.75
## 3                  1.70                 1.71
## 4                  1.67                 1.67
## 5                  1.63                 1.64
## 6                  1.60                 1.60
## 7                  1.57                 1.57
## 8                  1.55                 1.54
## 9                  1.51                 1.51
## 10                 1.49                 1.49
## 11                 1.47                 1.46
## 12                 1.43                 1.44
## 13                 1.41                 1.42
## 14                 1.39                 1.39
  1. depois:
corMat <- cor(tbl)
  1. lembre-se que nfactors é o resultado de fa.parallel(sua tabela) e n.obs= N, onde N é o número de observações ou linhas em sua nova tabela
nfactors <- nfactors$nfact
N <- nrow(tbl)
faPC <- fa(r = corMat, nfactors = 2, n.obs = N, rotate = "varimax")
print(faPC)
## Factor Analysis using method =  minres
## Call: fa(r = corMat, nfactors = 2, n.obs = N, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2     h2   u2 com
## P_1  -0.13  0.03 0.0185 0.98 1.1
## P_3   0.01 -0.08 0.0060 0.99 1.0
## P_4   0.18 -0.23 0.0858 0.91 1.9
## P_5  -0.33 -0.22 0.1601 0.84 1.8
## P_6   0.01  0.27 0.0733 0.93 1.0
## P_8   0.01  0.56 0.3183 0.68 1.0
## P_9   0.21  0.84 0.7479 0.25 1.1
## P_10  0.24  0.82 0.7226 0.28 1.2
## P_11  0.25  0.74 0.6128 0.39 1.2
## P_12  0.08 -0.82 0.6833 0.32 1.0
## P_13  0.08 -0.84 0.7107 0.29 1.0
## P_14  0.11 -0.82 0.6828 0.32 1.0
## P_15  0.57  0.01 0.3285 0.67 1.0
## P_16  0.48  0.00 0.2263 0.77 1.0
## P_17  0.53  0.10 0.2917 0.71 1.1
## P_18 -0.42  0.08 0.1810 0.82 1.1
## P_19  0.62  0.09 0.3980 0.60 1.0
## P_20  0.55  0.01 0.3065 0.69 1.0
## P_21 -0.23 -0.01 0.0515 0.95 1.0
## P_22 -0.02 -0.03 0.0014 1.00 1.9
## P_23  0.38  0.17 0.1735 0.83 1.4
## P_24  0.39  0.00 0.1491 0.85 1.0
## P_25 -0.04  0.10 0.0104 0.99 1.3
## P_26  0.60  0.03 0.3636 0.64 1.0
## P_27  0.59  0.02 0.3515 0.65 1.0
## P_28  0.50  0.08 0.2553 0.74 1.1
## P_29 -0.34  0.03 0.1149 0.89 1.0
## P_30 -0.16 -0.07 0.0304 0.97 1.4
## P_31  0.55  0.00 0.2973 0.70 1.0
## P_32  0.65  0.02 0.4244 0.58 1.0
## P_33  0.64  0.10 0.4209 0.58 1.0
## P_34  0.46 -0.01 0.2155 0.78 1.0
## P_35  0.67  0.01 0.4506 0.55 1.0
## P_36  0.70  0.10 0.5003 0.50 1.0
## P_37  0.30  0.10 0.1018 0.90 1.2
## P_38  0.39  0.06 0.1543 0.85 1.0
## P_39  0.43  0.10 0.1910 0.81 1.1
## P_40  0.25 -0.09 0.0732 0.93 1.3
## P_41  0.49  0.03 0.2428 0.76 1.0
## P_42  0.46  0.03 0.2107 0.79 1.0
## P_43  0.44 -0.02 0.1968 0.80 1.0
## P_44  0.40  0.00 0.1584 0.84 1.0
## P_45  0.45  0.18 0.2375 0.76 1.3
## P_46  0.43  0.16 0.2109 0.79 1.3
## P_47  0.18  0.03 0.0338 0.97 1.0
## P_48  0.18  0.03 0.0325 0.97 1.1
## P_49  0.29  0.15 0.1083 0.89 1.5
## P_50  0.42  0.18 0.2072 0.79 1.4
## P_51  0.42  0.15 0.1987 0.80 1.3
## P_53  0.27  0.74 0.6215 0.38 1.3
## P_54  0.24  0.86 0.8050 0.20 1.2
## P_55  0.27  0.83 0.7616 0.24 1.2
## P_56  0.29  0.76 0.6590 0.34 1.3
## P_57  0.11 -0.86 0.7443 0.26 1.0
## P_58  0.13 -0.83 0.7106 0.29 1.0
## P_59  0.12 -0.84 0.7256 0.27 1.0
## P_60  0.20 -0.04 0.0409 0.96 1.1
## P_61  0.17 -0.07 0.0332 0.97 1.3
## P_62  0.12 -0.18 0.0465 0.95 1.8
## P_63  0.12 -0.15 0.0377 0.96 1.9
## P_64  0.11 -0.08 0.0184 0.98 1.9
## P_65  0.18 -0.04 0.0360 0.96 1.1
## P_66  0.17 -0.06 0.0321 0.97 1.2
## P_68  0.10  0.15 0.0309 0.97 1.8
## P_69  0.06  0.14 0.0246 0.98 1.4
## P_70  0.09  0.14 0.0265 0.97 1.7
## P_71  0.09  0.15 0.0303 0.97 1.6
## P_72 -0.02 -0.39 0.1519 0.85 1.0
## P_73 -0.03 -0.38 0.1417 0.86 1.0
## P_74 -0.02 -0.34 0.1190 0.88 1.0
## P_75  0.54  0.09 0.3052 0.69 1.1
## P_76  0.65  0.20 0.4607 0.54 1.2
## P_77  0.63  0.05 0.4014 0.60 1.0
## P_78  0.60  0.06 0.3619 0.64 1.0
## P_79  0.56  0.04 0.3106 0.69 1.0
## 
##                         MR1   MR2
## SS loadings           10.30 10.06
## Proportion Var         0.14  0.13
## Cumulative Var         0.14  0.27
## Proportion Explained   0.51  0.49
## Cumulative Proportion  0.51  1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  2775  and the objective function was  58.79 with Chi Square of  30699.74
## The degrees of freedom for the model are 2626  and the objective function was  35.25 
## 
## The root mean square of the residuals (RMSR) is  0.1 
## The df corrected root mean square of the residuals is  0.1 
## 
## The harmonic number of observations is  549 with the empirical chi square  29321.74  with prob <  0 
## The total number of observations was  549  with Likelihood Chi Square =  18358.41  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.403
## RMSEA index =  0.104  and the 90 % confidence intervals are  0.103 0.106
## BIC =  1793.34
## Fit based upon off diagonal values = 0.79
## Measures of factor score adequacy             
##                                                    MR1  MR2
## Correlation of (regression) scores with factors   0.97 0.98
## Multiple R square of scores with factors          0.94 0.97
## Minimum correlation of possible factor scores     0.88 0.94
  1. salvar a tabela resultante (após todas as variáveis com h2 <0,40 terem sido excluídas).
h2 <- faPC$communality            # Coluna h2 da tabela acima
exclui <- mean(h2 < 0.40) > 0     # TRUE se houver h2 < 0.40
while(exclui){
    tbl <- tbl[!(h2 == min(h2))]    # Exclui variavel com menor h2
    nfactors <- fa.parallel(tbl, plot = FALSE)  # Recalcula nfactors
    nfactors <- nfactors$nfact      # Número de fatores
    N <- nrow(tbl)                  # Número de linhas da nova tabela
    corMat <- cor(tbl)              # Recalcula correlação
    faPC <- fa(r = corMat, nfactors = nfactors, n.obs = N, rotate = "varimax")
    h2 <- faPC$communality          # Coluna h2 da tabela acima
    exclui <- mean(h2 < 0.40) > 0   # Continua enquanto houver h2 < 0.40
}
## Parallel analysis suggests that the number of factors =  14  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  14  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  13  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  10 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9 
## Parallel analysis suggests that the number of factors =  12  and the number of components =  9
print(faPC)
## Factor Analysis using method =  minres
## Call: fa(r = corMat, nfactors = nfactors, n.obs = N, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   MR5   MR4  MR10   MR6   MR8  MR12   MR9  MR11   MR7
## P_4  -0.13 -0.03  0.09 -0.04  0.04  0.09  0.17 -0.01  0.05  0.59  0.09  0.07
## P_6   0.17 -0.03  0.04 -0.02 -0.08  0.08  0.02 -0.03  0.00 -0.67  0.02 -0.01
## P_8   0.47  0.15 -0.01 -0.07 -0.09 -0.01  0.05  0.07  0.05 -0.53  0.04  0.15
## P_9   0.84  0.11  0.15  0.09 -0.10  0.10  0.05  0.07 -0.01 -0.02 -0.16  0.27
## P_10  0.83  0.09  0.16  0.09 -0.05  0.11  0.08  0.05 -0.02 -0.02 -0.06  0.32
## P_11  0.78  0.07  0.13  0.11 -0.01  0.11  0.10  0.09  0.00  0.06 -0.03  0.30
## P_12 -0.80 -0.06  0.02  0.04  0.03  0.00  0.04  0.01  0.03  0.14  0.51 -0.01
## P_13 -0.81 -0.07  0.03  0.04  0.01 -0.01  0.03  0.03  0.02  0.15  0.50  0.01
## P_14 -0.80 -0.05  0.06  0.06  0.01 -0.01  0.03  0.04  0.04  0.14  0.51 -0.03
## P_15  0.03  0.00  0.54  0.07  0.06  0.15  0.02  0.37 -0.01  0.03  0.02 -0.04
## P_17  0.11  0.08  0.54  0.03  0.03  0.10  0.05  0.33 -0.04  0.02  0.05 -0.02
## P_19  0.09  0.05  0.59  0.10  0.03  0.23 -0.01  0.15  0.13 -0.02  0.03  0.03
## P_20  0.01 -0.02  0.69  0.04  0.03  0.07  0.05  0.05  0.07  0.00 -0.04  0.04
## P_26  0.04  0.03  0.33  0.16  0.07  0.13  0.11  0.13  0.69  0.04 -0.01 -0.01
## P_27  0.01  0.05  0.37  0.24  0.00  0.16  0.06  0.06  0.52  0.04  0.03 -0.02
## P_28  0.09  0.03  0.39  0.08 -0.03  0.08  0.05  0.05  0.46 -0.01  0.06  0.08
## P_31  0.00  0.01  0.23  0.20  0.09  0.20  0.03  0.19  0.60 -0.01 -0.02 -0.03
## P_32  0.03 -0.03  0.79  0.08  0.03  0.13  0.02 -0.01  0.13  0.02 -0.02 -0.02
## P_33  0.09 -0.01  0.61  0.01 -0.06  0.37  0.11  0.02  0.17 -0.04  0.02  0.04
## P_35  0.03 -0.04  0.68  0.14 -0.02  0.19  0.03  0.08  0.20  0.01  0.04 -0.04
## P_36  0.11 -0.02  0.66  0.18  0.04  0.21  0.10  0.05  0.17  0.05 -0.01  0.07
## P_37  0.09  0.01  0.08  0.65  0.01 -0.02  0.06  0.10  0.04 -0.01  0.04 -0.01
## P_38  0.04  0.01  0.11  0.79 -0.01  0.04 -0.04  0.11  0.14  0.03 -0.05  0.00
## P_39  0.09  0.03  0.12  0.66  0.01  0.09  0.04  0.09  0.20  0.04  0.03  0.01
## P_40 -0.11 -0.01  0.06  0.65  0.02  0.05 -0.09  0.14 -0.02  0.03 -0.08 -0.08
## P_41  0.05  0.04  0.22  0.15  0.11  0.12  0.08  0.63  0.09  0.02  0.00  0.00
## P_42  0.05  0.01  0.21  0.12  0.10  0.11  0.03  0.66  0.09  0.00  0.02 -0.01
## P_44  0.01 -0.02  0.11  0.21  0.06  0.07  0.05  0.61  0.12 -0.03 -0.01  0.04
## P_45  0.18 -0.03  0.21  0.39  0.12  0.05  0.45  0.04  0.12 -0.06  0.07  0.13
## P_46  0.14  0.04  0.23  0.21  0.10  0.13  0.49 -0.04  0.11 -0.10  0.06  0.10
## P_47  0.03 -0.03  0.03 -0.10  0.07  0.05  0.74  0.08  0.00  0.11 -0.05 -0.05
## P_48  0.02  0.00 -0.02 -0.04  0.05  0.09  0.73  0.08  0.00  0.11 -0.02 -0.06
## P_50  0.17  0.06  0.17  0.49  0.04  0.03  0.33  0.02  0.10 -0.11  0.21  0.19
## P_51  0.14  0.05  0.12  0.42  0.11  0.03  0.48  0.02  0.17 -0.10  0.12  0.14
## P_53  0.75  0.04  0.14  0.10 -0.05  0.13  0.18  0.04  0.09 -0.08  0.15 -0.12
## P_54  0.88  0.09  0.17  0.07 -0.07  0.09  0.10  0.03  0.06 -0.07  0.22 -0.02
## P_55  0.87  0.06  0.17  0.07 -0.03  0.08  0.11  0.08  0.05 -0.06  0.26  0.08
## P_56  0.80  0.05  0.12  0.15  0.03  0.12  0.12  0.06  0.10 -0.02  0.27  0.09
## P_57 -0.86 -0.05  0.05  0.01  0.02  0.07  0.06  0.03  0.02  0.12  0.02  0.40
## P_58 -0.84 -0.06  0.05  0.02  0.02  0.08  0.07  0.04  0.00  0.11  0.01  0.44
## P_59 -0.85 -0.06  0.07  0.01  0.00  0.07  0.04  0.06 -0.03  0.10  0.03  0.41
## P_60  0.01  0.16  0.02  0.10  0.68  0.06 -0.04  0.03  0.03  0.06  0.02  0.07
## P_61 -0.02  0.08  0.02  0.17  0.66  0.03  0.04  0.00 -0.05  0.05  0.03  0.01
## P_62 -0.12  0.00  0.03 -0.12  0.69 -0.04  0.12  0.08  0.09 -0.01 -0.05 -0.06
## P_63 -0.10 -0.01  0.06 -0.15  0.72 -0.01  0.11  0.12 -0.03  0.01 -0.05 -0.10
## P_66 -0.01  0.11 -0.01  0.05  0.62  0.02  0.05  0.04  0.06  0.05  0.03  0.06
## P_68  0.01  0.82  0.00 -0.01  0.26  0.03  0.03  0.03  0.03  0.00  0.02  0.00
## P_69  0.00  0.88 -0.04  0.01  0.26  0.03  0.00 -0.01  0.02  0.07 -0.03  0.14
## P_70  0.00  0.88 -0.03  0.01  0.27  0.06  0.00  0.00  0.03  0.07 -0.05  0.16
## P_71  0.02  0.88 -0.01  0.00  0.27  0.04 -0.01  0.00  0.02  0.08 -0.04  0.15
## P_72 -0.23 -0.78 -0.04 -0.02  0.17  0.02  0.02 -0.02  0.02  0.08 -0.08  0.14
## P_73 -0.19 -0.82 -0.04 -0.06  0.16  0.02 -0.01  0.01  0.02  0.10 -0.02  0.14
## P_74 -0.16 -0.78 -0.04 -0.01  0.14  0.03  0.00 -0.02 -0.03  0.12  0.02  0.14
## P_75  0.09 -0.04  0.31  0.03 -0.01  0.64  0.14  0.03  0.07  0.01  0.02  0.03
## P_76  0.19  0.07  0.47  0.06  0.00  0.58  0.11  0.09  0.05 -0.03  0.04  0.10
## P_77  0.04  0.04  0.39  0.01  0.10  0.60  0.06  0.18  0.16 -0.04  0.01 -0.01
## P_78  0.06  0.01  0.30  0.06  0.02  0.73  0.04  0.10  0.18  0.03 -0.03 -0.04
## P_79  0.04  0.03  0.30  0.07  0.02  0.68  0.03  0.12  0.06  0.03  0.00  0.02
##        h2    u2 com
## P_4  0.43 0.573 1.5
## P_6  0.50 0.504 1.2
## P_8  0.57 0.426 2.6
## P_9  0.86 0.135 1.5
## P_10 0.86 0.141 1.5
## P_11 0.76 0.235 1.6
## P_12 0.92 0.077 1.8
## P_13 0.94 0.064 1.8
## P_14 0.93 0.068 1.8
## P_15 0.46 0.543 2.0
## P_17 0.43 0.567 2.0
## P_19 0.46 0.541 1.7
## P_20 0.49 0.508 1.1
## P_26 0.67 0.332 1.9
## P_27 0.51 0.491 2.6
## P_28 0.40 0.599 2.4
## P_31 0.53 0.467 2.1
## P_32 0.67 0.331 1.1
## P_33 0.56 0.442 2.0
## P_35 0.56 0.437 1.5
## P_36 0.58 0.424 1.7
## P_37 0.45 0.550 1.2
## P_38 0.67 0.330 1.2
## P_39 0.52 0.481 1.4
## P_40 0.48 0.517 1.3
## P_41 0.52 0.480 1.6
## P_42 0.52 0.477 1.4
## P_44 0.46 0.544 1.5
## P_45 0.49 0.510 3.5
## P_46 0.43 0.575 2.8
## P_47 0.59 0.407 1.2
## P_48 0.57 0.428 1.1
## P_50 0.51 0.485 3.5
## P_51 0.53 0.471 3.2
## P_53 0.70 0.303 1.5
## P_54 0.90 0.103 1.3
## P_55 0.89 0.106 1.4
## P_56 0.81 0.194 1.5
## P_57 0.93 0.068 1.5
## P_58 0.94 0.059 1.6
## P_59 0.92 0.077 1.5
## P_60 0.52 0.478 1.2
## P_61 0.48 0.520 1.2
## P_62 0.55 0.452 1.3
## P_63 0.60 0.405 1.3
## P_66 0.42 0.583 1.2
## P_68 0.75 0.251 1.2
## P_69 0.87 0.128 1.3
## P_70 0.88 0.120 1.3
## P_71 0.88 0.125 1.3
## P_72 0.72 0.281 1.4
## P_73 0.78 0.223 1.3
## P_74 0.70 0.304 1.3
## P_75 0.55 0.451 1.7
## P_76 0.63 0.367 2.5
## P_77 0.59 0.411 2.2
## P_78 0.68 0.321 1.6
## P_79 0.57 0.427 1.5
## 
##                        MR1  MR3  MR2  MR5  MR4 MR10  MR6  MR8 MR12  MR9 MR11
## SS loadings           9.47 5.05 4.85 2.99 2.80 2.71 2.14 1.75 1.74 1.33 1.14
## Proportion Var        0.16 0.09 0.08 0.05 0.05 0.05 0.04 0.03 0.03 0.02 0.02
## Cumulative Var        0.16 0.25 0.33 0.39 0.43 0.48 0.52 0.55 0.58 0.60 0.62
## Proportion Explained  0.26 0.14 0.13 0.08 0.08 0.07 0.06 0.05 0.05 0.04 0.03
## Cumulative Proportion 0.26 0.39 0.52 0.60 0.68 0.75 0.81 0.86 0.90 0.94 0.97
##                        MR7
## SS loadings           1.13
## Proportion Var        0.02
## Cumulative Var        0.64
## Proportion Explained  0.03
## Cumulative Proportion 1.00
## 
## Mean item complexity =  1.7
## Test of the hypothesis that 12 factors are sufficient.
## 
## The degrees of freedom for the null model are  1653  and the objective function was  51.87 with Chi Square of  27380.39
## The degrees of freedom for the model are 1023  and the objective function was  7.36 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  549 with the empirical chi square  893.79  with prob <  1 
## The total number of observations was  549  with Likelihood Chi Square =  3827.14  with prob <  9.699991e-319 
## 
## Tucker Lewis Index of factoring reliability =  0.821
## RMSEA index =  0.071  and the 90 % confidence intervals are  0.068 0.073
## BIC =  -2626.04
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2  MR5  MR4 MR10
## Correlation of (regression) scores with factors   0.99 0.98 0.92 0.91 0.92 0.89
## Multiple R square of scores with factors          0.98 0.96 0.84 0.84 0.85 0.79
## Minimum correlation of possible factor scores     0.96 0.92 0.68 0.67 0.70 0.58
##                                                    MR6  MR8 MR12  MR9 MR11  MR7
## Correlation of (regression) scores with factors   0.89 0.85 0.85 0.84 0.95 0.94
## Multiple R square of scores with factors          0.80 0.73 0.72 0.70 0.90 0.88
## Minimum correlation of possible factor scores     0.59 0.45 0.43 0.41 0.79 0.75

Cria o scree plot

fa.parallel(tbl)

## Parallel analysis suggests that the number of factors =  12  and the number of components =  9
  1. executar fa.diagram(faPC) para identificar os fatores com suas respectivas variáveis, onde faPC é o resultante da AFE sem as variáveis com h2 <0,40.
fa.diagram(faPC)