PACOTES UTILIZADOS:

library(lavaan)
## This is lavaan 0.6-7
## lavaan is BETA software! Please report any bugs.
library(semPlot)
## Registered S3 methods overwritten by 'huge':
##   method    from   
##   plot.sim  BDgraph
##   print.sim BDgraph
library(OpenMx)
## To take full advantage of multiple cores, use:
##   mxOption(key='Number of Threads', value=parallel::detectCores()) #now
##   Sys.setenv(OMP_NUM_THREADS=parallel::detectCores()) #before library(OpenMx)
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:lavaan':
## 
##     vech
library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(knitr)
library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2

LEITURA DE DADOS GERAIS (CANA PLANTA E SOCA):

DADOS = read.csv("DADOS_CANA.csv", header = TRUE, sep = ";", dec = ",")
str(DADOS)
## 'data.frame':    108 obs. of  7 variables:
##  $ Clones: chr  "RB975375" "RB975375" "RB975375" "RB006655 " ...
##  $ Rep   : int  1 2 3 1 2 3 1 2 3 1 ...
##  $ FIBRA : num  12.7 12.6 12.8 13.3 13 ...
##  $ PZA   : num  85.4 84.8 85.9 83.9 81.1 ...
##  $ PCC   : num  15.7 15.7 15.7 14.9 13.5 ...
##  $ ATR   : num  155 154 154 148 137 ...
##  $ TIPO  : chr  "PLANTA" "PLANTA" "PLANTA" "PLANTA" ...
DADOS$Clones = as.factor(DADOS$Clones)
DADOS$Rep = as.factor(DADOS$Rep)
DADOS$TIPO = as.factor(DADOS$TIPO)

dados_planta = DADOS[which(DADOS$TIPO=="PLANTA"),]
dados_soca = DADOS[which(DADOS$TIPO=="SOCA"),]

ANALISES DE VARIÂNCIA INDIVIDUAIS E CONJUNTA

Individuais:

lm_planta = lm(ATR~Clones+Rep+FIBRA+PZA+PCC, data = dados_planta)
anova(lm_planta)
## Analysis of Variance Table
## 
## Response: ATR
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Clones    17 4101.6 241.268 29.7623 1.481e-14 ***
## Rep        2    6.2   3.115  0.3843   0.68412    
## FIBRA      1   51.8  51.834  6.3941   0.01676 *  
## PZA        1  176.5 176.510 21.7739 5.578e-05 ***
## PCC        1   42.7  42.662  5.2627   0.02872 *  
## Residuals 31  251.3   8.107                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lm_soca = lm(ATR~Clones+Rep+FIBRA+PZA+PCC, data = dados_soca)
anova(lm_soca)
## Analysis of Variance Table
## 
## Response: ATR
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Clones    17 6618.8  389.34 30.8398 8.933e-15 ***
## Rep        2    2.5    1.27  0.1008    0.9044    
## FIBRA      1    1.4    1.43  0.1129    0.7391    
## PZA        1   34.1   34.09  2.7000    0.1105    
## PCC        1  500.5  500.54 39.6480 5.290e-07 ***
## Residuals 31  391.4   12.62                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conjunta:

lm_geral = lm(ATR~Clones+Rep%in%TIPO+FIBRA+PZA+PCC+TIPO+Clones:TIPO, data = DADOS)
anova(lm_geral)
## Analysis of Variance Table
## 
## Response: ATR
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Clones      17 9605.0  565.00 47.5694 < 2.2e-16 ***
## FIBRA        1   81.8   81.84  6.8903   0.01079 *  
## PZA          1  938.3  938.34 79.0017 7.794e-13 ***
## PCC          1  889.6  889.63 74.9006 2.016e-12 ***
## TIPO         1   11.8   11.78  0.9919   0.32297    
## Rep:TIPO     4   14.7    3.67  0.3090   0.87098    
## Clones:TIPO 17  368.7   21.69  1.8259   0.04330 *  
## Residuals   65  772.0   11.88                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

De acordo com o modelo testado, existem efeitos acentuados de todas as variáveis, bem como de clones na resposta de ATR. Não existem diferenças claras da influência do tipo de plantio (cana ou soca) sob ATR, no entanto foi observada interação entre o efeito de clones e o plantio.

ANÁLISE DE TRILHA (planta e soca)

modelo = 'ATR~FIBRA+PZA+PCC'
fit = cfa(modelo, data = DADOS)
summary(fit,fit.measures = TRUE, standardized=T,rsquare=T)
## lavaan 0.6-7 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          4
##                                                       
##   Number of observations                           108
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               196.737
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -312.231
##   Loglikelihood unrestricted model (H1)       -312.231
##                                                       
##   Akaike (AIC)                                 632.461
##   Bayesian (BIC)                               643.190
##   Sample-size adjusted Bayesian (BIC)          630.551
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ATR ~                                                                 
##     FIBRA            -0.258    0.539   -0.480    0.632   -0.258   -0.021
##     PZA              -0.044    0.149   -0.294    0.769   -0.044   -0.015
##     PCC               8.405    0.501   16.765    0.000    8.405    0.915
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ATR              18.995    2.585    7.348    0.000   18.995    0.162
## 
## R-Square:
##                    Estimate
##     ATR               0.838
semPaths(fit,"std",layout = 'tree', edge.label.cex=.9, curvePivot = TRUE)

Correlação de Pearson:

ggcorr(DADOS[-c(1, 2,7)], nbreaks = 6, label = T, low = "red3", high = "green3", 
       label_round = 2, name = "Correlation Scale", label_alpha = T, hjust = 0.75) +
  ggtitle(label = "Correlation Plot") +
  theme(plot.title = element_text(hjust = 0.6))

Analise de trilha: cana planta

modelo_planta = 'ATR~FIBRA+PZA+PCC'
fit_planta = cfa(modelo_planta, data = dados_planta)
summary(fit_planta,fit.measures = TRUE, standardized=T,rsquare=T)
## lavaan 0.6-7 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          4
##                                                       
##   Number of observations                            54
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                92.667
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -150.476
##   Loglikelihood unrestricted model (H1)       -150.476
##                                                       
##   Akaike (AIC)                                 308.952
##   Bayesian (BIC)                               316.908
##   Sample-size adjusted Bayesian (BIC)          304.341
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ATR ~                                                                 
##     FIBRA            -0.995    0.575   -1.731    0.084   -0.995   -0.113
##     PZA              -0.111    0.167   -0.664    0.506   -0.111   -0.048
##     PCC               7.148    0.623   11.473    0.000    7.148    0.884
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ATR              15.414    2.967    5.196    0.000   15.414    0.180
## 
## R-Square:
##                    Estimate
##     ATR               0.820
semPaths(fit_planta, 'std', layout = 'circle')

semPaths(fit_planta,"std",layout = 'tree', edge.label.cex=.9, curvePivot = TRUE)

Analise de trilha: cana soca

modelo_soca = 'ATR~FIBRA+PZA+PCC'
fit_soca = cfa(modelo_soca, data = dados_soca)
summary(fit_soca,fit.measures = TRUE, standardized=T,rsquare=T)
## lavaan 0.6-7 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          4
##                                                       
##   Number of observations                            54
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               121.689
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -149.162
##   Loglikelihood unrestricted model (H1)       -149.162
##                                                       
##   Akaike (AIC)                                 306.325
##   Bayesian (BIC)                               314.281
##   Sample-size adjusted Bayesian (BIC)          301.714
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ATR ~                                                                 
##     FIBRA             0.923    1.023    0.902    0.367    0.923    0.044
##     PZA               0.083    0.232    0.357    0.721    0.083    0.022
##     PCC              10.130    0.687   14.753    0.000   10.130    0.949
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ATR              14.683    2.826    5.196    0.000   14.683    0.105
## 
## R-Square:
##                    Estimate
##     ATR               0.895
semPaths(fit_soca, 'std', layout = 'circle')

semPaths(fit_soca,"std",layout = 'tree', edge.label.cex=.9, curvePivot = TRUE)

De forma geral PCC é um indicador importante de ATR (p<0,01 em todos os casos). PZA não exerce influência direta em ATR, no entanto está positivamente relacionado a PCC. FIB apresenta relação negativa com PCC e também não influencia ATR diretamente.