L’objectif est d’analyser l’importance de la distribution du temps de service sur le temps de réponse dans une file d’attente M/GI/1 avec un ordonnancement LIFO. Le processus d’arrivée est un processus de Poisson de taux (débit), les clients ont un temps de service de moyenne 1 pris comme unité de temps de référence.
set.seed(10)
library(plyr)
library(ggplot2)
Service <- function(n=1,typeservice,x,y) {
# genere un temps de service
switch(typeservice,
det = rep(1,n),
uni = runif(n,x,y),
gamma = rgamma(n,shape=x,scale=y),
exp = rexp(n,x)
)
}
FileLIFO <- function(n,lambda,typeservice,x,y,policy) {
# simulates a M/GI/1 LIFO queue with different preemption policy
# parameters:
# n : total number of jobs
# lambda : arrival rate
# typeservice : service law (det uni gamma exp)
# x ,y : parameters of the service law
# policy: npmtn, pmtn, pmtn_restart, pmtn_reset
# return value:
# vector with response time of each task assuming the queue is initially empty
A <- rexp(n,lambda) # inter arrival
t1 <- cumsum(A) # arrival dates
t2 <- rep(NA,n) # completion dates
S <- Service(n,typeservice,x,y) # initial service times
#### Variables that define the state of the queue
t = 0 # current time
remaining = rep(NA,n) # how much work remains to do for each task
running = NA # index of the currently running task
waiting = c() # stack with tasks which have arrived and have not been completed yet
next_arrival = 1 # index of the next task to arrive
#### A few useful local functions
run_task = function() { # runs the last task of the waiting list
if(length(waiting)>0) {
running <<- waiting[length(waiting)]
remaining[running] <<- switch(policy,
npmtn = S[running],
pmtn = min(S[running],remaining[running],na.rm=T),
pmtn_restart = S[running],
pmtn_reset = Service(1,typeservice,x,y)
)
waiting <<- waiting[-length(waiting)]
}
}
push_task = function() { # insert the next_arrival-th task to the waiting list
# and run it if there is preemption
if(policy != "npmtn") {
if(!is.na(running)) {waiting <<- c(waiting,running)}
running <<- NA
}
waiting <<- c(waiting,next_arrival)
next_arrival <<- next_arrival+1
if(is.na(running)) { run_task() }
}
#### Main simulation loop
while(TRUE) {
# Look for next event
dt = NA
if(next_arrival <=n) { dt = min(dt,(t1[next_arrival]-t), na.rm=T) }
if(!is.na(running)) { dt = min(dt,remaining[running], na.rm=T) }
if(is.na(dt)) { break }
# Update state
t=t+dt
if(!is.na(running)) {
remaining[running] = remaining[running] - dt
if(remaining[running]<=0) {
t2[running] = t
running = NA
run_task()
}
}
if((next_arrival<=n) & (t==t1[next_arrival])) {
push_task()
}
}
t2-t1
}