Interactive Covid_19 Data Visualization

Row

Total cases so far in US as of 2020-09-23

6779609

Total Deaths in US as of 2020-09-23

198793

Total Cases in INDIA as of 2020-09-23

5646010

Total Cases in BRAZIL as of 2020-09-23

4558068

Row

Total cases by Countries with more than 100,000 cases as of 2020-09-23

Top Countries with more than 10,000 Total Deaths as of 2020-09-23

Top Countries with more than 100 Average Daily Deaths as of 2020-09-23

Top Countries with Case Fatality Rate (CFR) at least more than 10% as of 2020-09-23

Map

Map

Data Table

Pivot Table

Summary

Column

Total number of Covid_19 cases in the world so far

31425029

Total number of Deaths in the world so far

967164

Total number of cases in WHO Western Pacific Region (WPRO)

588138

Total number of cases in WHO South East Asian Region (SEARO)

6341635

Total number of cases in WHO American Region (AMRO)

15751167

Total number of cases in WHO Europe Region (EURO)

5320422

Total number of cases in WHO African Region (AFRO)

1156895

Total number of cases in WHO Eastern Mediterranean Region (EMRO)

2266031

Total number of cases in WHO OtherRegion (Other)

741

Column

Report

  • Top 5 countries in terms of total number of cases:
# A tibble: 5 x 8
  Date_reported Country_code Country WHO_region New_cases Cumulative_cases
  <date>        <chr>        <chr>   <chr>          <dbl>            <dbl>
1 2020-09-23    BR           Brazil  AMRO           13439          4558068
2 2020-09-23    IN           India   SEARO          83347          5646010
3 2020-09-23    PE           Peru    AMRO            4001           772896
4 2020-09-23    RU           Russia… EURO            6431          1122241
5 2020-09-23    US           United… AMRO           39145          6779609
# … with 2 more variables: New_deaths <dbl>, Cumulative_deaths <dbl>
  • Top 5 countries in terms of total number of deaths:
# A tibble: 5 x 8
  Date_reported Country_code Country WHO_region New_cases Cumulative_cases
  <date>        <chr>        <chr>   <chr>          <dbl>            <dbl>
1 2020-09-23    BR           Brazil  AMRO           13439          4558068
2 2020-09-23    GB           The Un… EURO            4926           403555
3 2020-09-23    IN           India   SEARO          83347          5646010
4 2020-09-23    MX           Mexico  AMRO            2917           700580
5 2020-09-23    US           United… AMRO           39145          6779609
# … with 2 more variables: New_deaths <dbl>, Cumulative_deaths <dbl>
  • Countries with more than 10% of Case Fatality Rate (CFR) are:
# A tibble: 4 x 2
  Country              CFR
  <chr>              <dbl>
1 Italy               11.9
2 Mexico              10.5
3 The United Kingdom  10.4
4 Yemen               28.9

About Report

Created By: Sanjeeva Reddy Dodlapati

Confidentiality: NOT AT ALL

Feel free to share it and use it

Please cite me as: Sanjeeva Reddy Dodlapati (url: https://rpubs.com/sdodlapa/663277)

---
title: "Covid_19 Tracker"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    vertical_layout: fill
    social: ["twitter", "facebook", "menu"]
    source_code: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(DT)
library(rpivotTable)
library(ggplot2)
library(plotly)
library(dplyr)
library(openintro)
library(highcharter)
library(ggvis)

library("tidyverse")
library('purrr')
library('readr')

options(stringsAsFactors = FALSE);
```

```{r}
url <- 'https://covid19.who.int/WHO-COVID-19-global-data.csv'
data <- read_csv(url)
dta <- data[complete.cases(data), ]
data <- data %>% arrange(Date_reported, Country_code)
```

```{r}
myColors <- c("blue", "#FFC125", "darkgreen", "darkorange")
```


Interactive Covid_19 Data Visualization
==============================================

Row
-----------------------------------------------



### Total cases so far in US as of `r data$Date_reported[nrow(data)] `
```{r}
valueBox(filter(data, Country_code == "US") %>% select(New_cases) %>% sum(),
         icon = 'fa-building')
```

### Total Deaths in US as of `r data$Date_reported[nrow(data)] `

```{r}
valueBox(filter(data, Country_code == "US") %>% select(New_deaths) %>% sum(),
         icon = 'fa-building')
```



### Total Cases in INDIA as of `r data$Date_reported[nrow(data)] `
```{r}
valueBox(filter(data, Country_code == "IN") %>% select(New_cases) %>% sum(),
         icon = 'fa-building')
```

### Total Cases in BRAZIL as of `r data$Date_reported[nrow(data)] `
```{r}
valueBox(filter(data, Country_code == "BR") %>% select(New_cases) %>% sum(),
         icon = 'fa-building')
```



Row
-----------------------------------------------------


### Total cases by Countries with more than 100,000 cases as of `r data$Date_reported[nrow(data)] `

```{r}
p1 <- data %>% group_by(Country) %>% 
    summarize(Total=sum(New_cases)) %>%
    filter(Total > 100000) %>%
    plot_ly(x = ~Country,
            y = ~Total,
            color = rainbow(data %>% group_by(Country) %>% 
    summarize(Total=sum(New_cases)) %>%
    filter(Total > 100000) %>%count()),
            type = 'bar') %>%
layout(xaxis = list(title = "Total cases by Country"),
       yaxis = list(title = 'Total number of cases'))
p1
```

### Top Countries with more than 10,000 Total Deaths as of `r data$Date_reported[nrow(data)] `

```{r}
p1 <- data %>% group_by(Country) %>% 
    summarize(Total=sum(New_deaths)) %>%
    filter(Total > 10000) %>%
    plot_ly(x = ~Country,
            y = ~Total,
            color = rainbow(16),
            type = 'bar') %>%
layout(xaxis = list(title = "Total Deaths by Country"),
       yaxis = list(title = 'Total number of Deaths'))
p1
```


### Top Countries with more than 100 Average Daily Deaths  as of `r data$Date_reported[nrow(data)] `
```{r}
p3 <- data %>% group_by(Country) %>% 
    summarize(mean=mean(New_deaths)) %>%
    filter(mean > 100) %>%
    plot_ly(labels = ~Country,
            values = ~mean,
            marker = list(colors = myColors)) %>%
            add_pie(hole=0.3) %>%
layout(xaxis = list(zeroline = F,
                    showline = F,
                    showticklabels = F,
                    showgrid = F),
       yaxis = list(zeroline = F,
                    showline = F,
                    showticklabels = F,
                    showgrid = F))

p3
```


### Top Countries with Case Fatality Rate (CFR) at least more than 10% as of `r data$Date_reported[nrow(data)] `
```{r}
p4 <- data %>% group_by(Country) %>% 
    summarize(CFR=round(sum(New_deaths)*100/sum(New_cases)), digits = 2) %>%
    filter(CFR >=10) %>%
    plot_ly(labels = ~Country,
            values = ~CFR,
            marker = list(colors = myColors)) %>%
            add_pie(hole=0.3) %>%
layout(xaxis = list(zeroline = F,
                    showline = F,
                    showticklabels = F,
                    showgrid = F),
       yaxis = list(zeroline = F,
                    showline = F,
                    showticklabels = F,
                    showgrid = F))

p4
```


Map
===========================================================

### Map
```{r}
#Cumulative_deaths <- filter(data, Date_reported==data$Date_reported[nrow(data)]) 
highchart() %>% hc_title(text = "Total deaths by Country") %>%
                hc_subtitle(text = "source: WHO-COVID-19-global-data.csv" ) %>%
                hc_add_series_map(worldgeojson, filter(data, Date_reported==data$Date_reported[nrow(data)]),
                                  name = "Country",
                                  value = "Cumulative_deaths",
                                  joinBy = c("woename", "Country")) %>%
                hc_mapNavigation((enabled = T))
```


Data Table
===============================================================

```{r}
data_CFR <- data %>% mutate(CFR = round(Cumulative_deaths/Cumulative_cases, digits=2))
datatable(data_CFR, 
          caption = "WHO Covid_19 Data",
          rownames = T,
          filter = "top",
          options = list(pageLength = 25))

```



Pivot Table
====================================================================

```{r}
data_CFR <- data %>% mutate(Cumulative_CFR = Cumulative_deaths/Cumulative_cases)
rpivotTable(data_CFR,
             aggregatorName = "Last",
             rows = "Date_reported",
             cols = "Country",
             rendererName = "Heatmap")
```


Summary {data-orientation=columns}
=============================================================

Column
-------------------------------------------------------------



### Total number of Covid_19 cases in the world so far
```{r}

valueBox(filter(data, Date_reported==data$Date_reported[nrow(data)]) %>% select(Cumulative_cases) %>% sum(),
        icon = "fa-user")
```



### Total number of Deaths in the world so far
```{r}

valueBox(filter(data, Date_reported==data$Date_reported[nrow(data)]) %>% select(Cumulative_deaths) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO Western Pacific Region (WPRO)
```{r}

valueBox(filter(data, WHO_region=="WPRO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO South East Asian Region (SEARO)
```{r}

valueBox(filter(data, WHO_region=="SEARO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO American Region (AMRO)
```{r}

valueBox(filter(data, WHO_region=="AMRO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO Europe Region (EURO)
```{r}

valueBox(filter(data, WHO_region=="EURO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO African Region (AFRO)
```{r}

valueBox(filter(data, WHO_region=="AFRO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO Eastern Mediterranean Region (EMRO)
```{r}

valueBox(filter(data, WHO_region=="EMRO") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```

### Total number of cases in WHO OtherRegion (Other)
```{r}

valueBox(filter(data, WHO_region=="Other") %>% select(New_cases) %>% sum(),
        icon = "fa-user")
```


Column
---------------------------------------------
Report

* Top 5 countries in terms of total number of cases: 
```{r}
filter(data, Date_reported == data$Date_reported[nrow(data)]) %>% top_n(5, Cumulative_cases)

```

* Top 5 countries in terms of total number of deaths: 
```{r}
filter(data, Date_reported == data$Date_reported[nrow(data)]) %>% top_n(5, Cumulative_deaths)

```

* Countries with more than 10% of Case Fatality Rate (CFR) are:
```{r}
data %>% group_by(Country) %>% 
    summarize(CFR=sum(New_deaths)*100/sum(New_cases)) %>%
    filter(CFR > 10)
```
About Report
==================================================================

Created By: Sanjeeva Reddy Dodlapati

Confidentiality: NOT AT ALL

Feel free to share it and use it

Please cite me as: Sanjeeva Reddy Dodlapati (url: https://rpubs.com/sdodlapa/663277)