# input data
dta <- read.csv("C:/Users/USER/Desktop/nlsy86wide.csv")


# inspect data structure
str(dta)
## 'data.frame':    166 obs. of  23 variables:
##  $ id        : int  23901 25601 37401 40201 63501 70301 72001 76101 76801 77001 ...
##  $ sex       : chr  "Female" "Female" "Female" "Male" ...
##  $ race      : chr  "Majority" "Majority" "Majority" "Majority" ...
##  $ grade86   : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ grade88   : int  2 1 2 1 3 2 1 3 2 2 ...
##  $ grade90   : int  3 3 5 2 4 3 3 4 5 4 ...
##  $ grade92   : int  5 6 6 5 6 5 5 6 6 5 ...
##  $ age86year : int  6 6 6 5 7 5 6 7 6 6 ...
##  $ age88year : int  8 8 8 8 9 8 8 9 9 8 ...
##  $ age90year : int  10 10 10 9 11 10 10 11 11 10 ...
##  $ age92year : int  12 12 12 12 13 12 12 13 13 12 ...
##  $ age86month: int  67 66 67 60 78 62 66 79 76 67 ...
##  $ age88month: int  96 95 95 91 108 93 94 109 104 94 ...
##  $ age90month: int  119 119 122 112 132 117 118 131 128 117 ...
##  $ age92month: int  142 143 144 139 155 139 140 154 151 139 ...
##  $ math86    : num  14.29 20.24 17.86 7.14 29.76 ...
##  $ math88    : num  15.5 36.9 22.6 21.4 50 ...
##  $ math90    : num  38.1 52.4 53.6 53.6 47.6 ...
##  $ math92    : num  41.7 58.3 58.3 51.2 71.4 ...
##  $ read86    : num  19.05 21.43 21.43 7.14 30.95 ...
##  $ read88    : num  29.8 32.1 45.2 21.4 50 ...
##  $ read90    : num  28.6 45.2 69 50 63.1 ...
##  $ read92    : num  45.2 57.1 78.6 59.5 82.1 ...
# examine first 6 lines
head(dta)
##      id    sex     race grade86 grade88 grade90 grade92 age86year age88year
## 1 23901 Female Majority       0       2       3       5         6         8
## 2 25601 Female Majority       0       1       3       6         6         8
## 3 37401 Female Majority       0       2       5       6         6         8
## 4 40201   Male Majority       0       1       2       5         5         8
## 5 63501   Male Majority       1       3       4       6         7         9
## 6 70301   Male Majority       0       2       3       5         5         8
##   age90year age92year age86month age88month age90month age92month    math86
## 1        10        12         67         96        119        142 14.285714
## 2        10        12         66         95        119        143 20.238095
## 3        10        12         67         95        122        144 17.857143
## 4         9        12         60         91        112        139  7.142857
## 5        11        13         78        108        132        155 29.761905
## 6        10        12         62         93        117        139 14.285714
##     math88   math90   math92    read86   read88   read90   read92
## 1 15.47619 38.09524 41.66667 19.047619 29.76190 28.57143 45.23810
## 2 36.90476 52.38095 58.33333 21.428571 32.14286 45.23810 57.14286
## 3 22.61905 53.57143 58.33333 21.428571 45.23810 69.04762 78.57143
## 4 21.42857 53.57143 51.19048  7.142857 21.42857 50.00000 59.52381
## 5 50.00000 47.61905 71.42857 30.952381 50.00000 63.09524 82.14286
## 6 36.90476 55.95238 63.09524 17.857143 46.42857 64.28571 96.42857
library(tidyr)
l2dta<-gather(dta,
              key=grade,value=Value2,
              grade86,grade88,grade90,grade92) 
l2dta1 <- l2dta[,c("id","sex","race","grade","Value2")]
head(l2dta1)
##      id    sex     race   grade Value2
## 1 23901 Female Majority grade86      0
## 2 25601 Female Majority grade86      0
## 3 37401 Female Majority grade86      0
## 4 40201   Male Majority grade86      0
## 5 63501   Male Majority grade86      1
## 6 70301   Male Majority grade86      0
library(tidyr)
l3dta<-gather(dta,
              key=year,value=Value3,
              age86year,age88year,age90year,age92year) 
l3dta1 <- l3dta[,c("id","sex","race","year","Value3")]
head(l3dta1)
##      id    sex     race      year Value3
## 1 23901 Female Majority age86year      6
## 2 25601 Female Majority age86year      6
## 3 37401 Female Majority age86year      6
## 4 40201   Male Majority age86year      5
## 5 63501   Male Majority age86year      7
## 6 70301   Male Majority age86year      5
library(tidyr)
l4dta<-gather(dta,
              key=month,value=Value4,
              age86month,age88month,age90month,age92month,)
l4dta1 <- l4dta[,c("id","sex","race","month","Value4")]
head(l4dta1)   
##      id    sex     race      month Value4
## 1 23901 Female Majority age86month     67
## 2 25601 Female Majority age86month     66
## 3 37401 Female Majority age86month     67
## 4 40201   Male Majority age86month     60
## 5 63501   Male Majority age86month     78
## 6 70301   Male Majority age86month     62
library(tidyr)
l5dta<-gather(dta,
              key=math,value=Value5,
              math86,math88,math90,math92,)
l5dta1 <- l5dta[,c("id","sex","race","math","Value5")]
head(l5dta1)
##      id    sex     race   math    Value5
## 1 23901 Female Majority math86 14.285714
## 2 25601 Female Majority math86 20.238095
## 3 37401 Female Majority math86 17.857143
## 4 40201   Male Majority math86  7.142857
## 5 63501   Male Majority math86 29.761905
## 6 70301   Male Majority math86 14.285714
library(tidyr)
l6dta<-gather(dta,
              key=read,value=Value6,
              read86,read88,read90,read92,)
l6dta1 <- l6dta[,c("id","sex","race","read","Value6")]
head(l6dta1)
##      id    sex     race   read    Value6
## 1 23901 Female Majority read86 19.047619
## 2 25601 Female Majority read86 21.428571
## 3 37401 Female Majority read86 21.428571
## 4 40201   Male Majority read86  7.142857
## 5 63501   Male Majority read86 30.952381
## 6 70301   Male Majority read86 17.857143
longdta <- cbind ((l2dta1[,c("id", "sex", "race", "grade", "Value2")]),
                  (l3dta1[,c("id","year", "Value3")]),
                  (l4dta1[,c("id","month", "Value4")]), 
                  (l5dta1[,c("id","math", "Value5")]), 
                  (l6dta1[,c("id","read", "Value6")]),by= "id")
head(longdta)
##      id    sex     race   grade Value2    id      year Value3    id      month
## 1 23901 Female Majority grade86      0 23901 age86year      6 23901 age86month
## 2 25601 Female Majority grade86      0 25601 age86year      6 25601 age86month
## 3 37401 Female Majority grade86      0 37401 age86year      6 37401 age86month
## 4 40201   Male Majority grade86      0 40201 age86year      5 40201 age86month
## 5 63501   Male Majority grade86      1 63501 age86year      7 63501 age86month
## 6 70301   Male Majority grade86      0 70301 age86year      5 70301 age86month
##   Value4    id   math    Value5    id   read    Value6 by
## 1     67 23901 math86 14.285714 23901 read86 19.047619 id
## 2     66 25601 math86 20.238095 25601 read86 21.428571 id
## 3     67 37401 math86 17.857143 37401 read86 21.428571 id
## 4     60 40201 math86  7.142857 40201 read86  7.142857 id
## 5     78 63501 math86 29.761905 63501 read86 30.952381 id
## 6     62 70301 math86 14.285714 70301 read86 17.857143 id
longdtafinal <- longdta[,c("id","sex","race","Value2","Value3","Value4","Value5","Value6")]
head(longdtafinal)
##      id    sex     race Value2 Value3 Value4    Value5    Value6
## 1 23901 Female Majority      0      6     67 14.285714 19.047619
## 2 25601 Female Majority      0      6     66 20.238095 21.428571
## 3 37401 Female Majority      0      6     67 17.857143 21.428571
## 4 40201   Male Majority      0      5     60  7.142857  7.142857
## 5 63501   Male Majority      1      7     78 29.761905 30.952381
## 6 70301   Male Majority      0      5     62 14.285714 17.857143
# plot
library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## √ ggplot2 3.3.2     √ dplyr   1.0.2
## √ tibble  3.0.3     √ stringr 1.4.0
## √ readr   1.3.1     √ forcats 0.5.0
## √ purrr   0.3.4
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
ggplot(data=longdtafinal, aes(x=Value4, y=Value6, group=id)) +
  geom_point(size=rel(.5)) +
  stat_smooth(mapping = NULL,
              data = NULL,
              geom = "smooth",
              position = "identity",
              method ="lm", 
              formula= y ~ x,
              se=F, 
              fullrange = FALSE,
              level = 0.95,
              color="blue", 
              linetype=1, 
              size=rel(.1)) +
  facet_grid(rows = vars(race),
             cols = vars(sex),
             scales = "free",
             space = "free",
             shrink = T,
             labeller = "label_value",
             as.table = T,
             switch = NULL,
             drop = T,
             margins = F,
             facets = NULL)  +
  labs(x="Month", y="Reading score") +
  theme_bw()

###