Make data vectors, calculate lambda, and put together dataframe with all necessary data.
The census period; an index from 1 to 39 of how many years of data have been collected.
census <- 1:39
census <- c(1:39)
census <- seq(1, 39)
census <- seq(1, 39, by = 1)
The year: 1959 to 1997 (Dennis et al use 1959-1987)
year.t <- 1959:1997
year.t <- seq(1959, 1997)
Population size is recorded as the number of females with …
females.N <- c(44,47,46,44,46,
45,46,40,39,39,
42,39,41,40,33,
36,34,39,35,34,
38,36,37,41,39,
51,47,57,48,60,
65,74,69,65,57,
70,81,99,99)
Population growth rate is…
Enter the population size for each year
females.N.1959 <- 44
females.N.1960 <- 47
Calculate the ratio of the 2 population sizes
lambda.59_60 <- females.N.1960/females.N.1959
Access the population sizes by using bracket notation rather than hard coding
# Access the data
females.N[1]
#> [1] 44
females.N[2]
#> [1] 47
# store in objects
females.N.1959 <- females.N[1]
females.N.1960 <- females.N[2]
# confirm the output
females.N.1960/females.N.1959
#> [1] 1.068182
Calculate lambda using bracket notation
lambda.59_60 <- females.N[2]/females.N[1]
The first year of data is 1959. What is lambda for 1958 to 1959?
females.N[1]
#> [1] 44
# can't be done; there is no date for 1958
# lambda.58_59 <- females.N[1]/females.N[ ]
TASK
Briefly describe (1-2 sentence) what this code is doing.
females.N[2:3]
#> [1] 47 46
females.N[1:2]
#> [1] 44 47
females.N[2:3]/females.N[1:2]
#> [1] 1.0681818 0.9787234
This is similar t the previous code chunk, just using all of the data (no need to describe)
length(females.N)
#> [1] 39
females.N[2:39]/females.N[1:38]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK What does this do? Briefly describe in 1 to 2 sentences why I am using length().
len <- length(females.N)
females.N[2:len]/females.N[1:len-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
TASK What does this do? Briefly describe in 1 to 2 sentences what is different about this code chunk from the previous one.
females.N[2:length(females.N)]/females.N[1:length(females.N)-1]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
Make a short vector to play with; first 10 years
females.N[1:10]
#> [1] 44 47 46 44 46 45 46 40 39 39
females.N[seq(1,10)]
#> [1] 44 47 46 44 46 45 46 40 39 39
females.Ntemp <- females.N[seq(1,10)]
Check - are there 10 numbers
length(females.Ntemp)
#> [1] 10
TASK
What does this do? Briefly describe what the [-1] is doing.
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK How many lambdas can I calculate using the first 10 years of data?
females.Ntemp[2:10]/females.Ntemp[1:9]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000
“Negative indexing” allows you to drop a specific element from a vector.
TASK Drop the the first element
females.Ntemp[-1]
#> [1] 47 46 44 46 45 46 40 39 39
TASK Drop the second element
females.Ntemp[-2]
#> [1] 44 46 44 46 45 46 40 39 39
TASK
How do you drop the 10th element? Type in the code below.
females.Ntemp[-10]
#> [1] 44 47 46 44 46 45 46 40 39
TASK How do you access the last element? Do this in a general way without hard-coding.
females.Ntemp[length(females.Ntemp)]
#> [1] 39
TASK How do DROP the last element? Do this in a general way without hard-coding. By general, I mean in a way that if the length of the vector females.Ntemp changed the code would still drop the correct element.
females.Ntemp[-length(females.Ntemp)]
#> [1] 44 47 46 44 46 45 46 40 39
TASK Calculate the first 9 lambdas.
# All lambdas: 44 47 46 44 46 45 46 40 39 39
# Drop 1st [-1]47 46 44 46 45 46 40 39 39
# Drop last 44 47 46 44 46 45 46 40 39 [-10]
# 47/44 is 1st lambda
# 46/47 is 2nd
# 44/46 is 3rd
lambda.i <- females.Ntemp[-1]/females.Ntemp[-10]
Converting between these 2 code chunks would be a good test question : )
lambda.i <- females.Ntemp[-1]/females.Ntemp[-length(females.Ntemp)]
TASK
Below each bulleted line describe what the parts of the code do. Run the code to test it.
What does females.N[-1] do?
What does females.N[-length(females.N)?
TASK Calculate lambdas for all of the data
females.N[-1]
#> [1] 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39 51
#> [26] 47 57 48 60 65 74 69 65 57 70 81 99 99
females.N[-length(females.N)]
#> [1] 44 47 46 44 46 45 46 40 39 39 42 39 41 40 33 36 34 39 35 34 38 36 37 41 39
#> [26] 51 47 57 48 60 65 74 69 65 57 70 81 99
lambda.i <- females.N[-1]/females.N[-length(females.N)]
TASK
What does this code do? Why do I include NA in the code? (I didn’t cover this in lecture, so just type 1 line - your best guess. “I don’t know” is fine.)
lambda.i <- c(lambda.i,NA)
TASK
Check the help file; what type of log does log() calculate (I forgot to put this question on the test!)
lambda_log <- log(lambda.i)
bear_N <- data.frame(census,
year.t,
females.N,
lambda.i,
lambda_log)
TASK
List 3 functions that allow you to examine this dataframe.
TASK
plot(females.N ~ year.t,
data = bear_N, #data =
type = "b",
ylab = "Population index (females + cubs)", #ylab =
xlab = "Year") #xlab =
Bears love to eat trash. Yellowstone closed the last garbage dump in 1970 https://www.yellowstonepark.com/things-to-do/yellowstone-bears-no-longer-get-garbage-treats
ADD 1-2 sentences note here
hat_of_lambdas <- bear_N$lambda.i
is.na(hat_of_lambdas)
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [37] FALSE FALSE TRUE
any(is.na(hat_of_lambdas) == TRUE)
#> [1] TRUE
Drop the NA
length(hat_of_lambdas)
#> [1] 39
hat_of_lambdas[39]
#> [1] NA
hat_of_lambdas[-39]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
hat_of_lambdas[-length(hat_of_lambdas)]
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
na.omit(hat_of_lambdas)
#> [1] 1.0681818 0.9787234 0.9565217 1.0454545 0.9782609 1.0222222 0.8695652
#> [8] 0.9750000 1.0000000 1.0769231 0.9285714 1.0512821 0.9756098 0.8250000
#> [15] 1.0909091 0.9444444 1.1470588 0.8974359 0.9714286 1.1176471 0.9473684
#> [22] 1.0277778 1.1081081 0.9512195 1.3076923 0.9215686 1.2127660 0.8421053
#> [29] 1.2500000 1.0833333 1.1384615 0.9324324 0.9420290 0.8769231 1.2280702
#> [36] 1.1571429 1.2222222 1.0000000
#> attr(,"na.action")
#> [1] 39
#> attr(,"class")
#> [1] "omit"
hat_of_lambdas <- hat_of_lambdas[-length(hat_of_lambdas)]
hist(hat_of_lambdas)
ADD 1-2 sentences note here
# add 1 comment ot this chunk
sample(x = hat_of_lambdas, size = 1,replace = TRUE)
#> [1] 0.942029
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
ADD 1-2 sentences note here
head(bear_N)
#> census year.t females.N lambda.i lambda_log
#> 1 1 1959 44 1.0681818 0.06595797
#> 2 2 1960 47 0.9787234 -0.02150621
#> 3 3 1961 46 0.9565217 -0.04445176
#> 4 4 1962 44 1.0454545 0.04445176
#> 5 5 1963 46 0.9782609 -0.02197891
#> 6 6 1964 45 1.0222222 0.02197891
tail(bear_N)
#> census year.t females.N lambda.i lambda_log
#> 34 34 1992 65 0.8769231 -0.1313360
#> 35 35 1993 57 1.2280702 0.2054440
#> 36 36 1994 70 1.1571429 0.1459539
#> 37 37 1995 81 1.2222222 0.2006707
#> 38 38 1996 99 1.0000000 0.0000000
#> 39 39 1997 99 NA NA
N.1997 <- 99
ADD 1-2 sentences note here
1.22807*99
#> [1] 121.5789
lambda_rand.t*N.1997
#> [1] 83.36842
N.1998 <- lambda_rand.t*N.1997
ADD 1-2 sentences note here
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1998 <- lambda_rand.t*N.1997
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.1999 <- lambda_rand.t*N.1998
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2000 <- lambda_rand.t*N.1999
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2001 <- lambda_rand.t*N.2000
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2002 <- lambda_rand.t*N.2001
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2003 <- lambda_rand.t*N.2002
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2004 <- lambda_rand.t*N.2003
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
N.2005 <- lambda_rand.t*N.2004
ADD 1-2 sentences note here
year <- seq(1997, 2004)
N.rand <- c(N.1998,N.1999,N.2000,N.2001,N.2002,N.2003,N.2004,N.2005)
df.rand <- data.frame(N.rand, year)
plot(N.rand ~ year, data = df.rand, type = "b")
ADD 1-2 sentences note here
# ADD TITLE HERE
N.1997 <- 99
N.initial <- 99
# ADD TITLE HERE
plot(N.1997 ~ c(1997))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50))
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
# ADD TITLE HERE
#
N.current <- N.initial
# ADD TITLE HERE
t <- 1
# ADD COMMENT HERE
lambda_rand.t <- sample(x = hat_of_lambdas, size = 1,replace = TRUE)
# ADD COMMENT HERE
N.t <- N.current*lambda_rand.t
# ADD COMMENT HERE
year.t <- 1997+t
# ADD COMMENT HERE
points(N.t ~ year.t)
# ADD COMMENT HERE
N.current <- N.t
ADD 1-2 sentences note here
# ADD COMMENT HERE
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
# ADD COMMENT HERE
for(t in 1:50){
# ADD COMMENT HERE
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
# ADD COMMENT HERE
N.t <- N.current*lambda_rand.t
# ADD COMMENT HERE
year.t <- 1997+t
# ADD COMMENT HERE
points(N.t ~ year.t)
# ADD COMMENT HERE
N.current <- N.t
}
ADD 1-2 sentences note here
par(mfrow = c(3,3), mar = c(1,1,1,1))
ADD 1-2 sentences note here
plot(N.1997 ~ c(1997), xlim = c(1997, 1997+50), ylim = c(0, 550))
N.current <- N.1997
for(t in 1:50){
lambda_rand.t <- sample(x = hat_of_lambdas,
size = 1,
replace = TRUE)
N.t <- N.current*lambda_rand.t
year.t <- 1997+t
points(N.t ~ year.t)
N.current <- N.t
}