\[ \begin{align*} l_1 &= l_{1}^{'} \pm \epsilon \\ l_2 &= l_{2}^{'} \pm \epsilon \end{align*} \]
\[ \begin{align*} l_1 + l_2 &= ( l_{1}^{'} \pm \epsilon ) + (l_{2}^{'} \pm \epsilon) \\ &= l_{1}^{'} + l_{2}^{'} \pm 2\epsilon \end{align*} \]
\[ \begin{align*} l \times h &= ( l' \pm \epsilon ) \times (h' \pm \epsilon) \\ &= l'h' \pm ( l'\epsilon + h'\epsilon + \epsilon^2) \end{align*} \]
\[ \begin{align*} l \times h &= ( l' \pm \epsilon ) \times (h' \pm \epsilon) \\ &= l'h' \pm ( l'\epsilon + h'\epsilon + \epsilon^2) \\ & \cong l'h' \end{align*} \]
log(0)
[1] -Inf
f <- function(x) {exp(x)}
x1 <- 10
x2 <- 10.1
c(f(x1), f(x2))
[1] 22026.47 24343.01