Libraries
library(haven);
library(sas7bdat);
library(plyr);
library(dplyr);
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr);
library(haven);
library(survival);
library(car);
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(muhaz);
library(survminer);
## Loading required package: ggplot2
## Loading required package: ggpubr
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
## mutate
library(ggplot2)
Loading PM2.5 data
PM2010 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2010.csv");
PM2011 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2011.csv");
PM2012 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2012.csv");
PM2013 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2013.csv");
PM2014 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2014.csv");
PM2015 = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/pm25TX2015.csv");
Loading Mortality Data
Mor2010 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2010.sas7bdat");
Mor2011 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2011.sas7bdat");
Mor2012 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2012.sas7bdat");
Mor2013 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2013.sas7bdat");
Mor2014 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2014.sas7bdat");
Mor2015 <- read_sas("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/death2015.sas7bdat");
Merging PM2.5 and mortality data into one of each and removing the initial data
PM25ALL <- rbind(PM2010,PM2011,PM2012,PM2013,PM2014,PM2015);
MorALL <- rbind(Mor2010,Mor2011,Mor2012,Mor2013,Mor2014,Mor2015);
rm(PM2010,PM2011,PM2012,PM2013,PM2014,PM2015,Mor2010,Mor2011,Mor2012,Mor2013,Mor2014,Mor2015)
Loading a county / county number list in order to merge the data
County = read.csv("C:/Users/tobik/OneDrive/Documents/Air Pollution Research/data/TXCounties.csv")
Adding to County to Fips codes in mortality data in order to merge the data sets (the county name may be redundant now, but that was a good way to check if it worked correctly)
MorALL$RESIDCOUNTY_CODE <- as.numeric(MorALL$RESIDCOUNTY_CODE);
County$ï..Number <- as.numeric(County$ï..Number);
MorALL <- merge(MorALL, County, by.x = "RESIDCOUNTY_CODE", by.y = "ï..Number", all.x = TRUE, all.y = FALSE)
Recoding dates (strptime did not work on all dates, so, I had to take it apart as string and recombine it so I can merge the data)
PM25ALL$NewDateM <- substr(PM25ALL$Date, start = 1, stop = 2);
PM25ALL$NewDateD <- substr(PM25ALL$Date, start = 4, stop = 5);
PM25ALL$NewDateY <- substr(PM25ALL$Date, start = 7, stop = 10);
PM25ALL$Date <- paste(PM25ALL$NewDateY,PM25ALL$NewDateM,PM25ALL$NewDateD, sep = "")
Creating averages per county for fine dust emissions per day
PM25ALL <- PM25ALL %>%
dplyr::group_by(Date, COUNTY_CODE) %>%
dplyr::mutate(
PM25Aver = mean(Daily.Mean.PM2.5.Concentration)) %>%
dplyr::ungroup()
Merging mortality data with PM2.5 averages
PM25Sub <- PM25ALL[,c(1,17,18,24)]
FromDustToDust <- merge(x = MorALL, y = PM25Sub, by.x = c("DATEOFDEATH","Fips"), by.y = c("Date","COUNTY_CODE"), all.x = TRUE)
Removing some lines due to missing data
FromDustToDust <- subset(FromDustToDust, complete.cases (PM25Aver,AGE))
FromDustToDust <- subset(FromDustToDust, AGE < 999)
Creating Dummy Variable for premature death (below 65 = 1; 65Plus = 0)
FromDustToDust$AGE <- as.numeric(FromDustToDust$AGE)
FromDustToDust$PrematureDeath <- as.numeric(FromDustToDust$AGE<65)
FromDustToDust$One <- 1 #dummy variable for survfit
This is for testing purposes if database reduction is needed #{r} FDTD<- FromDustToDust %>% select(AGE,SEX,PM25Aver,PrematureDeath) # Variables:
Event Variable: Death before the age of 65 (condition: 1 for premature death; 0 for reaching age 65)
Duration of time variable: Since this is a dichotomous outcome of either the event not occurring or occurring only once, there are no time variables.
Cumulative Hazard: The cumulative hazard is the hazard since there is only one time it is measured.
Analysis:
Kaplan-Meier survival analysis of the outcome
fit1 <- survfit(formula = Surv(AGE,One) ~ SEX, data = FromDustToDust);
fit1<-glm(PrematureDeath~PM25Aver, data = FromDustToDust, na.action = na.omit, family = binomial)
summary(fit1)
## Call: survfit(formula = Surv(AGE, One) ~ SEX, data = FromDustToDust)
##
## SEX=1
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 1432422 7454 9.95e-01 6.01e-05 9.95e-01 9.95e-01
## 2 1424968 5121 9.91e-01 7.79e-05 9.91e-01 9.91e-01
## 3 1419847 3361 9.89e-01 8.76e-05 9.89e-01 9.89e-01
## 4 1416486 2480 9.87e-01 9.41e-05 9.87e-01 9.87e-01
## 5 1414006 2010 9.86e-01 9.91e-05 9.86e-01 9.86e-01
## 6 1411996 1534 9.85e-01 1.03e-04 9.84e-01 9.85e-01
## 7 1410462 1211 9.84e-01 1.05e-04 9.84e-01 9.84e-01
## 8 1409251 1210 9.83e-01 1.08e-04 9.83e-01 9.83e-01
## 9 1408041 1093 9.82e-01 1.10e-04 9.82e-01 9.82e-01
## 10 1406948 1175 9.81e-01 1.13e-04 9.81e-01 9.82e-01
## 11 1405773 1090 9.81e-01 1.15e-04 9.80e-01 9.81e-01
## 12 1404683 829 9.80e-01 1.17e-04 9.80e-01 9.80e-01
## 13 1403854 834 9.79e-01 1.18e-04 9.79e-01 9.80e-01
## 14 1403020 1006 9.79e-01 1.20e-04 9.79e-01 9.79e-01
## 15 1402014 1372 9.78e-01 1.23e-04 9.78e-01 9.78e-01
## 16 1400642 1875 9.77e-01 1.27e-04 9.76e-01 9.77e-01
## 17 1398767 2410 9.75e-01 1.31e-04 9.75e-01 9.75e-01
## 18 1396357 3309 9.73e-01 1.37e-04 9.72e-01 9.73e-01
## 19 1393048 3836 9.70e-01 1.43e-04 9.70e-01 9.70e-01
## 20 1389212 4390 9.67e-01 1.50e-04 9.66e-01 9.67e-01
## 21 1384822 4562 9.64e-01 1.57e-04 9.63e-01 9.64e-01
## 22 1380260 5169 9.60e-01 1.64e-04 9.60e-01 9.60e-01
## 23 1375091 4686 9.57e-01 1.70e-04 9.56e-01 9.57e-01
## 24 1370405 5022 9.53e-01 1.76e-04 9.53e-01 9.54e-01
## 25 1365383 4859 9.50e-01 1.82e-04 9.49e-01 9.50e-01
## 26 1360524 4849 9.46e-01 1.88e-04 9.46e-01 9.47e-01
## 27 1355675 5000 9.43e-01 1.94e-04 9.43e-01 9.43e-01
## 28 1350675 4718 9.40e-01 1.99e-04 9.39e-01 9.40e-01
## 29 1345957 5122 9.36e-01 2.04e-04 9.36e-01 9.36e-01
## 30 1340835 5010 9.33e-01 2.10e-04 9.32e-01 9.33e-01
## 31 1335825 5110 9.29e-01 2.15e-04 9.29e-01 9.29e-01
## 32 1330715 5235 9.25e-01 2.20e-04 9.25e-01 9.26e-01
## 33 1325480 5377 9.22e-01 2.25e-04 9.21e-01 9.22e-01
## 34 1320103 5452 9.18e-01 2.30e-04 9.17e-01 9.18e-01
## 35 1314651 4952 9.14e-01 2.34e-04 9.14e-01 9.15e-01
## 36 1309699 5434 9.11e-01 2.38e-04 9.10e-01 9.11e-01
## 37 1304265 5415 9.07e-01 2.43e-04 9.06e-01 9.07e-01
## 38 1298850 5867 9.03e-01 2.48e-04 9.02e-01 9.03e-01
## 39 1292983 6433 8.98e-01 2.53e-04 8.98e-01 8.99e-01
## 40 1286550 6495 8.94e-01 2.58e-04 8.93e-01 8.94e-01
## 41 1280055 7215 8.89e-01 2.63e-04 8.88e-01 8.89e-01
## 42 1272840 7872 8.83e-01 2.68e-04 8.83e-01 8.84e-01
## 43 1264968 8411 8.77e-01 2.74e-04 8.77e-01 8.78e-01
## 44 1256557 8909 8.71e-01 2.80e-04 8.70e-01 8.72e-01
## 45 1247648 9228 8.65e-01 2.86e-04 8.64e-01 8.65e-01
## 46 1238420 10604 8.57e-01 2.92e-04 8.57e-01 8.58e-01
## 47 1227816 11630 8.49e-01 2.99e-04 8.48e-01 8.50e-01
## 48 1216186 12840 8.40e-01 3.06e-04 8.39e-01 8.41e-01
## 49 1203346 13801 8.30e-01 3.14e-04 8.30e-01 8.31e-01
## 50 1189545 15383 8.20e-01 3.21e-04 8.19e-01 8.20e-01
## 51 1174162 17385 8.08e-01 3.29e-04 8.07e-01 8.08e-01
## 52 1156777 18313 7.95e-01 3.37e-04 7.94e-01 7.95e-01
## 53 1138464 19966 7.81e-01 3.46e-04 7.80e-01 7.82e-01
## 54 1118498 20648 7.66e-01 3.54e-04 7.66e-01 7.67e-01
## 55 1097850 22067 7.51e-01 3.61e-04 7.50e-01 7.52e-01
## 56 1075783 23756 7.34e-01 3.69e-04 7.34e-01 7.35e-01
## 57 1052027 25015 7.17e-01 3.76e-04 7.16e-01 7.18e-01
## 58 1027012 24931 7.00e-01 3.83e-04 6.99e-01 7.00e-01
## 59 1002081 26072 6.81e-01 3.89e-04 6.81e-01 6.82e-01
## 60 976009 25770 6.63e-01 3.95e-04 6.63e-01 6.64e-01
## 61 950239 27261 6.44e-01 4.00e-04 6.44e-01 6.45e-01
## 62 922978 28226 6.25e-01 4.05e-04 6.24e-01 6.25e-01
## 63 894752 28393 6.05e-01 4.08e-04 6.04e-01 6.06e-01
## 64 866359 27883 5.85e-01 4.12e-04 5.85e-01 5.86e-01
## 65 838476 28306 5.66e-01 4.14e-04 5.65e-01 5.66e-01
## 66 810170 28155 5.46e-01 4.16e-04 5.45e-01 5.47e-01
## 67 782015 27980 5.26e-01 4.17e-04 5.26e-01 5.27e-01
## 68 754035 27858 5.07e-01 4.18e-04 5.06e-01 5.08e-01
## 69 726177 26505 4.88e-01 4.18e-04 4.88e-01 4.89e-01
## 70 699672 27795 4.69e-01 4.17e-04 4.68e-01 4.70e-01
## 71 671877 27875 4.50e-01 4.16e-04 4.49e-01 4.50e-01
## 72 644002 27724 4.30e-01 4.14e-04 4.29e-01 4.31e-01
## 73 616278 27596 4.11e-01 4.11e-04 4.10e-01 4.12e-01
## 74 588682 27417 3.92e-01 4.08e-04 3.91e-01 3.93e-01
## 75 561265 27507 3.73e-01 4.04e-04 3.72e-01 3.73e-01
## 76 533758 28909 3.52e-01 3.99e-04 3.52e-01 3.53e-01
## 77 504849 28963 3.32e-01 3.94e-04 3.31e-01 3.33e-01
## 78 475886 29693 3.11e-01 3.87e-04 3.11e-01 3.12e-01
## 79 446193 30544 2.90e-01 3.79e-04 2.89e-01 2.91e-01
## 80 415649 30862 2.69e-01 3.70e-04 2.68e-01 2.69e-01
## 81 384787 32131 2.46e-01 3.60e-04 2.45e-01 2.47e-01
## 82 352656 32022 2.24e-01 3.48e-04 2.23e-01 2.25e-01
## 83 320634 32176 2.01e-01 3.35e-04 2.01e-01 2.02e-01
## 84 288458 31578 1.79e-01 3.21e-04 1.79e-01 1.80e-01
## 85 256880 31277 1.57e-01 3.04e-04 1.57e-01 1.58e-01
## 86 225603 30240 1.36e-01 2.87e-04 1.36e-01 1.37e-01
## 87 195363 29145 1.16e-01 2.68e-04 1.16e-01 1.17e-01
## 88 166218 27801 9.66e-02 2.47e-04 9.61e-02 9.71e-02
## 89 138417 25775 7.86e-02 2.25e-04 7.82e-02 7.91e-02
## 90 112642 22970 6.26e-02 2.02e-04 6.22e-02 6.30e-02
## 91 89672 20306 4.84e-02 1.79e-04 4.81e-02 4.88e-02
## 92 69366 16889 3.66e-02 1.57e-04 3.63e-02 3.69e-02
## 93 52477 14139 2.68e-02 1.35e-04 2.65e-02 2.70e-02
## 94 38338 10683 1.93e-02 1.15e-04 1.91e-02 1.95e-02
## 95 27655 8248 1.35e-02 9.66e-05 1.34e-02 1.37e-02
## 96 19407 6214 9.21e-03 7.98e-05 9.06e-03 9.37e-03
## 97 13193 4525 6.05e-03 6.48e-05 5.93e-03 6.18e-03
## 98 8668 2759 4.13e-03 5.36e-05 4.02e-03 4.23e-03
## 99 5909 2216 2.58e-03 4.24e-05 2.50e-03 2.66e-03
## 100 3693 1506 1.53e-03 3.26e-05 1.46e-03 1.59e-03
## 101 2187 855 9.30e-04 2.55e-05 8.81e-04 9.81e-04
## 102 1332 620 4.97e-04 1.86e-05 4.62e-04 5.35e-04
## 103 712 318 2.75e-04 1.39e-05 2.49e-04 3.04e-04
## 104 394 154 1.68e-04 1.08e-05 1.48e-04 1.90e-04
## 105 240 109 9.15e-05 7.99e-06 7.71e-05 1.09e-04
## 106 131 48 5.79e-05 6.36e-06 4.67e-05 7.19e-05
## 107 83 37 3.21e-05 4.73e-06 2.41e-05 4.29e-05
## 108 46 12 2.37e-05 4.07e-06 1.70e-05 3.32e-05
## 109 34 4 2.09e-05 3.82e-06 1.46e-05 3.00e-05
## 110 30 6 1.68e-05 3.42e-06 1.12e-05 2.50e-05
## 111 24 12 8.38e-06 2.42e-06 4.76e-06 1.48e-05
## 112 12 9 2.09e-06 1.21e-06 6.75e-07 6.49e-06
## 116 3 3 0.00e+00 NaN NA NA
##
## SEX=2
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 1346449 5819 9.96e-01 5.65e-05 9.96e-01 9.96e-01
## 2 1340630 4052 9.93e-01 7.35e-05 9.93e-01 9.93e-01
## 3 1336578 2858 9.91e-01 8.34e-05 9.90e-01 9.91e-01
## 4 1333720 1870 9.89e-01 8.92e-05 9.89e-01 9.89e-01
## 5 1331850 1714 9.88e-01 9.43e-05 9.88e-01 9.88e-01
## 6 1330136 1374 9.87e-01 9.81e-05 9.87e-01 9.87e-01
## 7 1328762 874 9.86e-01 1.00e-04 9.86e-01 9.86e-01
## 8 1327888 913 9.86e-01 1.03e-04 9.85e-01 9.86e-01
## 9 1326975 821 9.85e-01 1.05e-04 9.85e-01 9.85e-01
## 10 1326154 827 9.84e-01 1.07e-04 9.84e-01 9.85e-01
## 11 1325327 701 9.84e-01 1.09e-04 9.84e-01 9.84e-01
## 12 1324626 646 9.83e-01 1.10e-04 9.83e-01 9.84e-01
## 13 1323980 743 9.83e-01 1.12e-04 9.83e-01 9.83e-01
## 14 1323237 648 9.82e-01 1.14e-04 9.82e-01 9.83e-01
## 15 1322589 860 9.82e-01 1.16e-04 9.81e-01 9.82e-01
## 16 1321729 905 9.81e-01 1.18e-04 9.81e-01 9.81e-01
## 17 1320824 1018 9.80e-01 1.20e-04 9.80e-01 9.80e-01
## 18 1319806 1241 9.79e-01 1.23e-04 9.79e-01 9.80e-01
## 19 1318565 1344 9.78e-01 1.26e-04 9.78e-01 9.79e-01
## 20 1317221 1595 9.77e-01 1.29e-04 9.77e-01 9.77e-01
## 21 1315626 1644 9.76e-01 1.32e-04 9.76e-01 9.76e-01
## 22 1313982 1709 9.75e-01 1.36e-04 9.74e-01 9.75e-01
## 23 1312273 1872 9.73e-01 1.39e-04 9.73e-01 9.74e-01
## 24 1310401 1912 9.72e-01 1.43e-04 9.72e-01 9.72e-01
## 25 1308489 1863 9.70e-01 1.46e-04 9.70e-01 9.71e-01
## 26 1306626 2019 9.69e-01 1.50e-04 9.69e-01 9.69e-01
## 27 1304607 2179 9.67e-01 1.53e-04 9.67e-01 9.68e-01
## 28 1302428 1987 9.66e-01 1.57e-04 9.66e-01 9.66e-01
## 29 1300441 2067 9.64e-01 1.60e-04 9.64e-01 9.65e-01
## 30 1298374 2280 9.63e-01 1.64e-04 9.62e-01 9.63e-01
## 31 1296094 2591 9.61e-01 1.68e-04 9.60e-01 9.61e-01
## 32 1293503 2720 9.59e-01 1.72e-04 9.58e-01 9.59e-01
## 33 1290783 2833 9.57e-01 1.76e-04 9.56e-01 9.57e-01
## 34 1287950 2866 9.54e-01 1.80e-04 9.54e-01 9.55e-01
## 35 1285084 3014 9.52e-01 1.84e-04 9.52e-01 9.53e-01
## 36 1282070 2955 9.50e-01 1.88e-04 9.50e-01 9.50e-01
## 37 1279115 3374 9.47e-01 1.92e-04 9.47e-01 9.48e-01
## 38 1275741 3544 9.45e-01 1.97e-04 9.44e-01 9.45e-01
## 39 1272197 4038 9.42e-01 2.02e-04 9.41e-01 9.42e-01
## 40 1268159 3920 9.39e-01 2.06e-04 9.39e-01 9.39e-01
## 41 1264239 4401 9.36e-01 2.11e-04 9.35e-01 9.36e-01
## 42 1259838 4846 9.32e-01 2.17e-04 9.32e-01 9.33e-01
## 43 1254992 5448 9.28e-01 2.23e-04 9.28e-01 9.28e-01
## 44 1249544 5423 9.24e-01 2.28e-04 9.24e-01 9.24e-01
## 45 1244121 5963 9.20e-01 2.34e-04 9.19e-01 9.20e-01
## 46 1238158 6568 9.15e-01 2.41e-04 9.14e-01 9.15e-01
## 47 1231590 7768 9.09e-01 2.48e-04 9.08e-01 9.09e-01
## 48 1223822 8200 9.03e-01 2.55e-04 9.02e-01 9.03e-01
## 49 1215622 9292 8.96e-01 2.63e-04 8.95e-01 8.96e-01
## 50 1206330 10333 8.88e-01 2.72e-04 8.88e-01 8.89e-01
## 51 1195997 11362 8.80e-01 2.80e-04 8.79e-01 8.80e-01
## 52 1184635 11343 8.71e-01 2.88e-04 8.71e-01 8.72e-01
## 53 1173292 12069 8.62e-01 2.97e-04 8.62e-01 8.63e-01
## 54 1161223 13132 8.53e-01 3.05e-04 8.52e-01 8.53e-01
## 55 1148091 13639 8.43e-01 3.14e-04 8.42e-01 8.43e-01
## 56 1134452 14837 8.32e-01 3.23e-04 8.31e-01 8.32e-01
## 57 1119615 15302 8.20e-01 3.31e-04 8.20e-01 8.21e-01
## 58 1104313 15936 8.08e-01 3.39e-04 8.08e-01 8.09e-01
## 59 1088377 16470 7.96e-01 3.47e-04 7.95e-01 7.97e-01
## 60 1071907 15916 7.84e-01 3.54e-04 7.84e-01 7.85e-01
## 61 1055991 16849 7.72e-01 3.62e-04 7.71e-01 7.72e-01
## 62 1039142 17995 7.58e-01 3.69e-04 7.58e-01 7.59e-01
## 63 1021147 19756 7.44e-01 3.76e-04 7.43e-01 7.44e-01
## 64 1001391 19772 7.29e-01 3.83e-04 7.28e-01 7.30e-01
## 65 981619 19870 7.14e-01 3.89e-04 7.14e-01 7.15e-01
## 66 961749 20162 6.99e-01 3.95e-04 6.99e-01 7.00e-01
## 67 941587 20857 6.84e-01 4.01e-04 6.83e-01 6.85e-01
## 68 920730 20556 6.69e-01 4.06e-04 6.68e-01 6.69e-01
## 69 900174 20800 6.53e-01 4.10e-04 6.52e-01 6.54e-01
## 70 879374 21666 6.37e-01 4.14e-04 6.36e-01 6.38e-01
## 71 857708 22069 6.21e-01 4.18e-04 6.20e-01 6.21e-01
## 72 835639 22477 6.04e-01 4.21e-04 6.03e-01 6.05e-01
## 73 813162 22636 5.87e-01 4.24e-04 5.86e-01 5.88e-01
## 74 790526 23672 5.70e-01 4.27e-04 5.69e-01 5.70e-01
## 75 766854 25141 5.51e-01 4.29e-04 5.50e-01 5.52e-01
## 76 741713 26591 5.31e-01 4.30e-04 5.30e-01 5.32e-01
## 77 715122 26539 5.11e-01 4.31e-04 5.11e-01 5.12e-01
## 78 688583 29211 4.90e-01 4.31e-04 4.89e-01 4.91e-01
## 79 659372 31410 4.66e-01 4.30e-04 4.66e-01 4.67e-01
## 80 627962 32278 4.42e-01 4.28e-04 4.42e-01 4.43e-01
## 81 595684 34345 4.17e-01 4.25e-04 4.16e-01 4.18e-01
## 82 561339 37065 3.89e-01 4.20e-04 3.89e-01 3.90e-01
## 83 524274 36849 3.62e-01 4.14e-04 3.61e-01 3.63e-01
## 84 487425 39370 3.33e-01 4.06e-04 3.32e-01 3.34e-01
## 85 448055 41651 3.02e-01 3.96e-04 3.01e-01 3.03e-01
## 86 406404 42279 2.70e-01 3.83e-04 2.70e-01 2.71e-01
## 87 364125 42673 2.39e-01 3.67e-04 2.38e-01 2.39e-01
## 88 321452 42489 2.07e-01 3.49e-04 2.07e-01 2.08e-01
## 89 278963 40867 1.77e-01 3.29e-04 1.76e-01 1.77e-01
## 90 238096 39437 1.48e-01 3.06e-04 1.47e-01 1.48e-01
## 91 198659 35857 1.21e-01 2.81e-04 1.20e-01 1.21e-01
## 92 162802 31796 9.73e-02 2.55e-04 9.68e-02 9.78e-02
## 93 131006 27803 7.66e-02 2.29e-04 7.62e-02 7.71e-02
## 94 103203 22806 5.97e-02 2.04e-04 5.93e-02 6.01e-02
## 95 80397 19373 4.53e-02 1.79e-04 4.50e-02 4.57e-02
## 96 61024 16214 3.33e-02 1.55e-04 3.30e-02 3.36e-02
## 97 44810 12747 2.38e-02 1.31e-04 2.36e-02 2.41e-02
## 98 32063 9475 1.68e-02 1.11e-04 1.66e-02 1.70e-02
## 99 22588 6859 1.17e-02 9.26e-05 1.15e-02 1.19e-02
## 100 15729 5525 7.58e-03 7.47e-05 7.43e-03 7.73e-03
## 101 10204 3628 4.88e-03 6.01e-05 4.77e-03 5.00e-03
## 102 6576 2294 3.18e-03 4.85e-05 3.09e-03 3.28e-03
## 103 4282 1676 1.94e-03 3.79e-05 1.86e-03 2.01e-03
## 104 2606 1044 1.16e-03 2.93e-05 1.10e-03 1.22e-03
## 105 1562 721 6.25e-04 2.15e-05 5.84e-04 6.68e-04
## 106 841 333 3.77e-04 1.67e-05 3.46e-04 4.12e-04
## 107 508 250 1.92e-04 1.19e-05 1.70e-04 2.16e-04
## 108 258 142 8.62e-05 8.00e-06 7.18e-05 1.03e-04
## 109 116 72 3.27e-05 4.93e-06 2.43e-05 4.39e-05
## 110 44 25 1.41e-05 3.24e-06 9.00e-06 2.21e-05
## 111 19 3 1.19e-05 2.97e-06 7.28e-06 1.94e-05
## 112 16 6 7.43e-06 2.35e-06 4.00e-06 1.38e-05
## 113 10 9 7.43e-07 7.43e-07 1.05e-07 5.27e-06
## 114 1 1 0.00e+00 NaN NA NA
Plotting:
ggsurvplot(fit1)
The Grouping Variable is Sex (1 = male, 2 = female)
My hypothesis is that females have a higher survival probability than males.
The hypothesis seemed to be supported.