DEM 7223 Homework 1 Introduction to Event History Analysis and Functions of Survival Time Add Health Suicide Ideation Ricardo Lowe

PART I

Using Public Use Add Health data files from 1995 to 2008, I aim to investigate age-specific exposure to suicide ideation (event variable).

First, I load my libraries:

library(haven)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
library(dplyr)
library(muhaz)
library(haven) 
library(survival) 
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode

Then, I pull in the data files:

#ADD HEALTH 1995 (WI), 96 (WII), 01 (WIII) and 08 (WIV)
add95 <- read_sav("~/Desktop/ICPSR_21600/DS0001/21600-0001-Data.sav")
add96 <- read_sav("~/Desktop/ICPSR_21600-2/DS0005/21600-0005-Data.sav")
add01 <- read_sav("~/Desktop/ICPSR_21600 - 3/DS0008/21600-0008-Data.sav")
add08 <- read_sav("~/Desktop/ICPSR_21600-040/DS0022/21600-0022-Data.sav")

I join the files

#Join 96 and 95 since the former does not have Race variable 

add96_2 <- left_join(add95, add96, by = c('AID'))

The clean it up a bit so that select variables can be manipulated.

#Year in 95 is only two-digit, so making a 4 digit variable
add95$DIG <- ifelse(add95$AID>0,19," ")
add95$AGE_ <- as.character(add95$H1GI1Y)
add95$AGE1 <- as.numeric(paste(add95$DIG,add95$AGE_,sep = ""))
## Warning: NAs introduced by coercion
#TEST
a9N5 <- add95 %>% select(AID,DIG,AGE1)

I rename variables

#Rename Variables in Datasets to prep for Stack
add95 <- rename(add95, YEAR = IYEAR, BIRTHYR = AGE1, RACE = H1GI9, SEX = BIO_SEX, SUI = H1SU1, SUA = H1SU2)
add96 <- rename(add96_2, YEAR = IYEAR2, BIRTHYR = H2GI1Y, RACE = H1GI9, SEX = BIO_SEX2, SUI = H2SU1, SUA = H2SU2)
add01 <- rename(add01, YEAR = IYEAR3, BIRTHYR = H3OD1Y,  RACE = H3IR4, SEX = BIO_SEX3, SUI = H3TO130, SUA = H3TO131)
add08 <- rename(add08, YEAR = IYEAR4, BIRTHYR = H4OD1Y, RACE = H4IR4, SEX = BIO_SEX4, SUI = H4SE1, SUA = H4SE2)

Year for 1995 and 1996 were intially two digits, so I corrected them

add95$YEAR <- ifelse(add95$YEAR == 95,1995,"")
add96$YEAR <- ifelse(add96$YEAR == 96,1996,"")

Now i select the variables I need fro each dataset

#-----------------id---year---race-sex-ideation-------attempt
a95 <- add95 %>% select(AID,YEAR,BIRTHYR,RACE,SEX,SUA,SUI)
a96 <- add96 %>% select(AID,YEAR,BIRTHYR,RACE,SEX,SUA,SUI)
a01 <- add01 %>% select(AID,YEAR,BIRTHYR,RACE,SEX,SUA,SUI)
a08 <- add08 %>% select(AID,YEAR,BIRTHYR,RACE,SEX,SUA,SUI)

And stack all the datasets into one. Then rearrage columns.

sui <- rbind(a95,a01,a08)

X <- sui %>% 
  arrange(desc(AID))

X$AGE <- as.numeric(X$YEAR) - as.numeric(X$BIRTHYR)

X$SUA <- NULL

EV <- X[, c(1, 2, 3, 7, 4,5,6)]



EV$PERIOD <- 2008 - as.numeric(EV$YEAR)

EV
## # A tibble: 16,500 x 8
##    AID     YEAR  BIRTHYR   AGE              RACE       SEX            SUI PERIOD
##    <chr>   <chr>   <dbl> <dbl>         <dbl+lbl> <dbl+lbl>      <dbl+lbl>  <dbl>
##  1 997199… 1995     1981    14 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…     13
##  2 997199… 2008     1981    27 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…      0
##  3 997199… 1995     1980    15 1 [(1) White]     2 [(2) F… 0 [(0) No (sk…     13
##  4 997199… 2001     1980    21 1 [(1) White]     2 [(2) F… 1 [(1) Yes]         7
##  5 997199… 2008     1980    28 1 [(1) White]     2 [(2) F… 0 [(0) No (sk…      0
##  6 997199… 1995     1981    14 1 [(1) White]     1 [(1) M… 1 [(1) Yes]        13
##  7 997199… 2008     1981    27 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…      0
##  8 997199… 1995     1981    14 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…     13
##  9 997199… 2001     1981    20 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…      7
## 10 997199… 2008     1981    27 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…      0
## # … with 16,490 more rows

Now I order by AID (ID number)

EV2 <- EV %>%
  arrange(desc(AID))

EV2
## # A tibble: 16,500 x 8
##    AID     YEAR  BIRTHYR   AGE              RACE       SEX            SUI PERIOD
##    <chr>   <chr>   <dbl> <dbl>         <dbl+lbl> <dbl+lbl>      <dbl+lbl>  <dbl>
##  1 997199… 1995     1981    14 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…     13
##  2 997199… 2008     1981    27 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…      0
##  3 997199… 1995     1980    15 1 [(1) White]     2 [(2) F… 0 [(0) No (sk…     13
##  4 997199… 2001     1980    21 1 [(1) White]     2 [(2) F… 1 [(1) Yes]         7
##  5 997199… 2008     1980    28 1 [(1) White]     2 [(2) F… 0 [(0) No (sk…      0
##  6 997199… 1995     1981    14 1 [(1) White]     1 [(1) M… 1 [(1) Yes]        13
##  7 997199… 2008     1981    27 1 [(1) White]     1 [(1) M… 0 [(0) No (sk…      0
##  8 997199… 1995     1981    14 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…     13
##  9 997199… 2001     1981    20 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…      7
## 10 997199… 2008     1981    27 2 [(2) Black/Afr… 1 [(1) M… 0 [(0) No (sk…      0
## # … with 16,490 more rows

In the Add Health data, suicide ideation is recorded as ‘yes’ or ‘no’ (I excluded other options like DK or Refusal). I created a variable that provides the age of the respondent at time of ideation. If the respondent did not contemplate suicide by age 33, then the variable is SUI == 0 and the age at ideation is censored.

If the age at death is censored, then the age at ideation (censored age at ideation) is the year of the interview - year of birth. If the respondent contemplated suicide by age of 33, then the age at ideation in years is the variable sui.age2. Here I code this:

EV2$sui.age2<-ifelse(EV2$SUI==1,EV2$AGE,"")
EV2$sui.age<-ifelse(EV2$SUI==0,
                         EV2$AGE,
                         EV2$sui.age2)

EV2$sui.age2<-as.numeric(EV2$sui.age2,na.rm=TRUE)
EV2$sui.age<-as.numeric(EV2$sui.age,na.rm=TRUE)



#censoring indicator for death by age 1, in months (12 months)
EV2$d.event<-ifelse(is.na(EV2$sui.age2)==T|EV2$sui.age2>33,0,1)
EV2$d.eventfac<-factor(EV2$d.event); levels(EV2$d.eventfac)<-c("No Suicide Ideation", "Suicide Ideation")
table(EV2$d.eventfac)
## 
## No Suicide Ideation    Suicide Ideation 
##               15056                1444

We see 1444 suicide ideators among the 15056 respondents across all 4 waves. RACE

summary(EV2$AGE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   12.00   17.00   21.00   21.89   27.00   34.00       4
library(survival)
head(EV2[,c("sui.age","d.event")], n=20)
## # A tibble: 20 x 2
##    sui.age d.event
##      <dbl>   <dbl>
##  1      14       0
##  2      27       0
##  3      15       0
##  4      21       1
##  5      28       0
##  6      14       1
##  7      27       0
##  8      14       0
##  9      20       0
## 10      27       0
## 11      13       0
## 12      19       0
## 13      26       0
## 14      14       0
## 15      20       0
## 16      27       0
## 17      14       0
## 18      20       0
## 19      27       0
## 20      15       0
head(Surv(EV2$sui.age, EV2$d.event), n=20)
##  [1] 14+ 27+ 15+ 21  28+ 14  27+ 14+ 20+ 27+ 13+ 19+ 26+ 14+ 20+ 27+ 14+ 20+ 27+
## [20] 15+
mort<-survfit(Surv(sui.age, d.event)~1, data=EV2,conf.type="none")
plot(mort, ylim=c(.7,1), xlim=c(13,33), main="Survival Function for Suicide Ideation Among Respondents")

1000*(1-summary(mort)$surv[16])
## [1] 123.6626
summary(mort)
## Call: survfit(formula = Surv(sui.age, d.event) ~ 1, data = EV2, conf.type = "none")
## 
## 241 observations deleted due to missingness 
##  time n.risk n.event survival  std.err
##    13  16251      49    0.997 0.000430
##    14  15677      95    0.991 0.000751
##    15  14783     142    0.981 0.001089
##    16  13712     150    0.971 0.001386
##    17  12565     185    0.956 0.001718
##    18  11402     144    0.944 0.001969
##    19  10259      85    0.936 0.002128
##    20   9513      62    0.930 0.002251
##    21   8840      51    0.925 0.002360
##    22   8046      67    0.917 0.002521
##    23   7232      34    0.913 0.002615
##    24   6401      30    0.909 0.002717
##    25   5636      22    0.905 0.002810
##    26   5211      40    0.898 0.002995
##    27   4633      47    0.889 0.003247
##    28   3895      56    0.876 0.003622
##    29   3007      56    0.860 0.004159
##    30   2112      62    0.835 0.005126
##    31   1227      48    0.802 0.006753
##    32    356      16    0.766 0.010917
##    33     53       3    0.723 0.026407

This Kaplan-Meier estimate of the survival function shows/ the number of respondents at risk of ideation and the number actually contemplating suivide. We see the highest number of suicide ideations occurred between 14 and 18 years of age.

EV2 <- EV2 %>% filter(!is.na(sui.age))


library(muhaz)
hazard<-kphaz.fit(time=EV2$sui.age, status=EV2$d.event, method = "product-limit")
kphaz.plot(hazard, main="Hazard function plot")

data.frame(hazard)
##    time         haz          var
## 1  13.5 0.006250236 4.113146e-07
## 2  14.5 0.009981525 7.019656e-07
## 3  15.5 0.011469560 8.775582e-07
## 4  16.5 0.015430919 1.288091e-06
## 5  17.5 0.013346521 1.238277e-06
## 6  18.5 0.008581702 8.667703e-07
## 7  19.5 0.006750514 7.352982e-07
## 8  20.5 0.006078859 7.251578e-07
## 9  21.5 0.008724834 1.137240e-06
## 10 22.5 0.005046990 7.504069e-07
## 11 23.5 0.004968199 8.238959e-07
## 12 24.5 0.004074120 7.547632e-07
## 13 25.5 0.008163162 1.667444e-06
## 14 26.5 0.011098821 2.627641e-06
## 15 27.5 0.016484103 4.879146e-06
## 16 28.5 0.022318668 8.990932e-06
## 17 29.5 0.039678076 2.601705e-05
## 18 30.5 0.073649752 1.297388e-04
## 19 31.5 0.117409476 1.180331e-03
## 20 32.5 0.062944351 1.325387e-03

The hazard is highest among respondents aged between 15 and 18. There is also a large jump in risk between ages 31 and 32. Now we have our S(t) and h(t) functions. We can derive the other functions of survival time from these but integrating (summing) and differentiating these functions.

#cumulative hazard
plot(cumsum(hazard$haz)~hazard$time, 
     main = "Cumulative Hazard function",
     ylab="H(t)",xlab="Time in Years", 
     type="l",xlim=c(13,33), lwd=2,col=3)

#Survival function, I just store this in an object so I can use it
surv<-mort

#here is a cheap version of the pdf
ft<- -diff(mort$surv)
plot(ft, xlim=c(13.0,33.0), 
     type="s",
     ylab="f(t)",xlab="Time in Years",
     main="Probability Density Function")

#here is the cumulative distribution function
Ft<-cumsum(ft)
plot(Ft, xlim=c(13.0,33.0), type="s", ylab="F(t)",xlab="Time in Years", main="Cumulative Distribution Function")

PART II

We will now test for differences in survival by characteristics of the student. First we will examine whether the survival chances are the same for Black students, compared to white students.

Here, 0=White, and 1=Black.

EV2$race<-Recode(EV2$RACE, recodes ="1 = 0; 2=1; else=NA") 
fit1<-survfit(Surv(sui.age2, d.event)~race, data=EV2)
fit1
## Call: survfit(formula = Surv(sui.age2, d.event) ~ race, data = EV2)
## 
##    14930 observations deleted due to missingness 
##           n events median 0.95LCL 0.95UCL
## race=0 1039   1039     18      18      19
## race=1  290    290     18      18      20
ggsurvplot(fit1, xlim=c(13,33), conf.int=T,
title="Survival Function for Suicide Ideation - White vs. Black Students", ylim=c(0, 1))

summary(fit1)
## Call: survfit(formula = Surv(sui.age2, d.event) ~ race, data = EV2)
## 
## 14930 observations deleted due to missingness 
##                 race=0 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    13   1039      30 0.971126 0.005195     0.960997      0.98136
##    14   1009      67 0.906641 0.009026     0.889122      0.92451
##    15    942     100 0.810395 0.012161     0.786907      0.83458
##    16    842     111 0.703561 0.014168     0.676333      0.73189
##    17    731     131 0.577478 0.015324     0.548211      0.60831
##    18    600      97 0.484119 0.015504     0.454666      0.51548
##    19    503      63 0.423484 0.015329     0.394481      0.45462
##    20    440      45 0.380173 0.015060     0.351773      0.41087
##    21    395      38 0.343600 0.014733     0.315903      0.37372
##    22    357      48 0.297401 0.014181     0.270866      0.32654
##    23    309      25 0.273340 0.013826     0.247541      0.30183
##    24    284      24 0.250241 0.013438     0.225241      0.27801
##    25    260      14 0.236766 0.013188     0.212279      0.26408
##    26    246      31 0.206930 0.012568     0.183707      0.23309
##    27    215      35 0.173244 0.011741     0.151694      0.19785
##    28    180      45 0.129933 0.010431     0.111015      0.15207
##    29    135      43 0.088547 0.008813     0.072853      0.10762
##    30     92      40 0.050048 0.006765     0.038401      0.06523
##    31     52      39 0.012512 0.003448     0.007290      0.02147
##    32     13      12 0.000962 0.000962     0.000136      0.00683
##    33      1       1 0.000000      NaN           NA           NA
## 
##                 race=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    13    290      14   0.9517 0.01259      0.92737       0.9767
##    14    276      20   0.8828 0.01889      0.84650       0.9206
##    15    256      25   0.7966 0.02364      0.75154       0.8443
##    16    231      22   0.7207 0.02635      0.67086       0.7742
##    17    209      35   0.6000 0.02877      0.54618       0.6591
##    18    174      31   0.4931 0.02936      0.43879       0.5541
##    19    143      13   0.4483 0.02920      0.39454       0.5093
##    20    130      14   0.4000 0.02877      0.34741       0.4606
##    21    116      11   0.3621 0.02822      0.31077       0.4218
##    22    105      14   0.3138 0.02725      0.26468       0.3720
##    23     91       7   0.2897 0.02664      0.24188       0.3469
##    24     84       6   0.2690 0.02604      0.22248       0.3252
##    25     78       7   0.2448 0.02525      0.20002       0.2997
##    26     71       9   0.2138 0.02407      0.17145       0.2666
##    27     62      11   0.1759 0.02236      0.13708       0.2256
##    28     51      11   0.1379 0.02025      0.10344       0.1839
##    29     40       9   0.1069 0.01814      0.07665       0.1491
##    30     31      16   0.0517 0.01301      0.03160       0.0847
##    31     15       9   0.0207 0.00836      0.00937       0.0457
##    32      6       4   0.0069 0.00486      0.00173       0.0274
##    33      2       2   0.0000     NaN           NA           NA
survdiff(Surv(sui.age2, d.event)~race, data=EV2)
## Call:
## survdiff(formula = Surv(sui.age2, d.event) ~ race, data = EV2)
## 
## n=1329, 14930 observations deleted due to missingness.
## 
##           N Observed Expected (O-E)^2/E (O-E)^2/V
## race=0 1039     1039     1030    0.0822     0.448
## race=1  290      290      299    0.2829     0.448
## 
##  Chisq= 0.4  on 1 degrees of freedom, p= 0.5

In this case, we see no difference in survival status based on race. How about sex?

0=Male,1=Female

EV2$sex<-Recode(EV2$SEX, recodes ="1 = 0; 2=1; else=NA") 
fit2<-survfit(Surv(sui.age2, d.event)~sex, data=EV2)
fit2
## Call: survfit(formula = Surv(sui.age2, d.event) ~ sex, data = EV2)
## 
##    14815 observations deleted due to missingness 
##         n events median 0.95LCL 0.95UCL
## sex=0 570    570     19      18      19
## sex=1 874    874     18      18      18
ggsurvplot(fit2, xlim=c(13,33), conf.int=T,
title="Survival Function for Suicide Ideation - Male vs. Female Students", ylim=c(0, 1))

summary(fit2)
## Call: survfit(formula = Surv(sui.age2, d.event) ~ sex, data = EV2)
## 
## 14815 observations deleted due to missingness 
##                 sex=0 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    13    570      20   0.9649 0.00771      0.94992       0.9801
##    14    550      27   0.9175 0.01152      0.89524       0.9404
##    15    523      41   0.8456 0.01513      0.81647       0.8758
##    16    482      55   0.7491 0.01816      0.71437       0.7856
##    17    427      70   0.6263 0.02026      0.58783       0.6673
##    18    357      61   0.5193 0.02093      0.47986       0.5620
##    19    296      40   0.4491 0.02083      0.41009       0.4919
##    20    256      22   0.4105 0.02060      0.37206       0.4530
##    21    234      23   0.3702 0.02022      0.33258       0.4120
##    22    211      30   0.3175 0.01950      0.28154       0.3582
##    23    181      18   0.2860 0.01893      0.25117       0.3256
##    24    163      16   0.2579 0.01832      0.22437       0.2964
##    25    147      12   0.2368 0.01781      0.20439       0.2744
##    26    135      13   0.2140 0.01718      0.18288       0.2505
##    27    122      20   0.1789 0.01606      0.15009       0.2134
##    28    102      20   0.1439 0.01470      0.11775       0.1758
##    29     82      31   0.0895 0.01196      0.06886       0.1163
##    30     51      23   0.0491 0.00905      0.03423       0.0705
##    31     28      21   0.0123 0.00461      0.00588       0.0256
##    32      7       7   0.0000     NaN           NA           NA
## 
##                 sex=1 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    13    874      29  0.96682 0.00606      0.95502       0.9788
##    14    845      68  0.88902 0.01063      0.86843       0.9101
##    15    777     101  0.77346 0.01416      0.74620       0.8017
##    16    676      95  0.66476 0.01597      0.63419       0.6968
##    17    581     115  0.53318 0.01688      0.50111       0.5673
##    18    466      83  0.43822 0.01678      0.40653       0.4724
##    19    383      45  0.38673 0.01647      0.35575       0.4204
##    20    338      40  0.34096 0.01603      0.31094       0.3739
##    21    298      28  0.30892 0.01563      0.27976       0.3411
##    22    270      37  0.26659 0.01496      0.23883       0.2976
##    23    233      16  0.24828 0.01461      0.22123       0.2786
##    24    217      14  0.23227 0.01428      0.20589       0.2620
##    25    203      10  0.22082 0.01403      0.19497       0.2501
##    26    193      27  0.18993 0.01327      0.16563       0.2178
##    27    166      27  0.15904 0.01237      0.13655       0.1852
##    28    139      36  0.11785 0.01091      0.09830       0.1413
##    29    103      25  0.08924 0.00964      0.07221       0.1103
##    30     78      39  0.04462 0.00698      0.03283       0.0606
##    31     39      27  0.01373 0.00394      0.00783       0.0241
##    32     12       9  0.00343 0.00198      0.00111       0.0106
##    33      3       3  0.00000     NaN           NA           NA
survdiff(Surv(sui.age2, d.event)~sex, data=EV2)
## Call:
## survdiff(formula = Surv(sui.age2, d.event) ~ sex, data = EV2)
## 
## n=1444, 14815 observations deleted due to missingness.
## 
##         N Observed Expected (O-E)^2/E (O-E)^2/V
## sex=0 570      570      605      2.04      4.28
## sex=1 874      874      839      1.47      4.28
## 
##  Chisq= 4.3  on 1 degrees of freedom, p= 0.04

Significant!

prop.table(table(EV2$d.event, EV2$sex), margin = 2)
##    
##              0          1
##   0 0.92500987 0.89905290
##   1 0.07499013 0.10094710
chisq.test(table(EV2$d.event, EV2$sex))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(EV2$d.event, EV2$sex)
## X-squared = 33.379, df = 1, p-value = 7.583e-09
quantile(fit2, probs=.05)
## $quantile
##        5
## sex=0 14
## sex=1 14
## 
## $lower
##        5
## sex=0 13
## sex=1 14
## 
## $upper
##        5
## sex=0 14
## sex=1 14
EV2 <- EV2 %>% filter(!is.na(sui.age2))

haz2<-kphaz.fit(EV2$sui.age2, EV2$d.event, EV2$sex) 
haz2
## $time
##  [1] 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5
## [16] 28.5 29.5 30.5 31.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5
## [31] 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5 32.5
## 
## $haz
##  [1] 0.05028991 0.08155608 0.12102658 0.17881883 0.18708800 0.14491839
##  [7] 0.08967295 0.10323042 0.15296901 0.10444237 0.10298446 0.08485618
## [13] 0.10086010 0.17824704 0.21706235 0.47120690 0.59164214 1.33431390
## [19] 2.59285714 0.08384451 0.13915117 0.15132144 0.22035288 0.19591831
## [25] 0.12481545 0.12575406 0.09849773 0.14708983 0.07098311 0.06653272
## [31] 0.05038839 0.15028181 0.17693007 0.29849124 0.27647012 0.68677801
## [37] 1.15033236 1.26987734 1.83333333
## 
## $var
##  [1] 9.368917e-05 1.623190e-04 2.666421e-04 4.580208e-04 5.754771e-04
##  [6] 5.259525e-04 3.657553e-04 4.637377e-04 7.815044e-04 6.065609e-04
## [11] 6.634462e-04 6.004053e-04 7.831797e-04 1.592800e-03 2.365044e-03
## [16] 7.295802e-03 1.566726e-02 9.805289e-02 1.511797e+00 1.034415e-04
## [21] 1.920229e-04 2.414937e-04 4.239319e-04 4.639386e-04 3.466471e-04
## [26] 3.958730e-04 3.467728e-04 5.857952e-04 3.150443e-04 3.163020e-04
## [31] 2.539521e-04 8.380408e-04 1.162440e-03 2.493333e-03 3.076921e-03
## [36] 1.257642e-02 5.464232e-02 2.038655e-01 1.361111e+00
## 
## $strata
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [39] 1
plot(y=haz2$haz[1:12], x=haz2$time[1:12], col=1, lty=1, type="s") 
lines(y=haz2$haz[13:24], x=haz2$time[13:24], col=2, lty=1, type="s")

plot(y=haz2$haz[1:33], x=haz2$time[1:33], col=1, lty=1, type="s") 
lines(y=haz2$haz[13:40], x=haz2$time[13:40], col=2, lty=1, type="s")