Preface: You have to log into the Pitt network via Pulse Secure first, and then either use the terminal to access Zeus or a remote desktop program. You will need to mount 2 file-server dirs before running this script (/IGNITE_Imaging & /IGNITE_Admin). Use the go tab in the apple toolbar as you normally would to mount both directories on REHA.
Links:
* https://neurostars.org/t/mriqc-users-excluding-bold-data/4560
* https://cran.r-project.org/web/packages/ERSA/vignettes/ERSA.html
* https://nhsrcommunity.com/blog/animating-a-graph-over-time-in-shiny/
* https://indrajeetpatil.github.io/groupedstats/
* https://cran.rstudio.com/web/packages/kableExtra/vignettes/awesome_table_in_html.html
* https://escholarship.org/content/qt00d4q8cp/qt00d4q8cp.pdf?t=odeb86 (potenially useful)
library(gcalendr)
#calendar_auth("alysha.gilmore.92@gmail.com")
calendar_ids <- calendar_list()
my_cal_id <- "4iukca7nkso9cqqsnmqcaqvtr4@group.calendar.google.com"
BACH.Neuroimaging.Cal <- calendar_events(my_cal_id, days_in_past = 0, days_in_future = 7)
PET_CAL<-BACH.Neuroimaging.Cal[stringr::str_detect(BACH.Neuroimaging.Cal$summary, pattern="PET")==TRUE, ]
MRI_CAL<-BACH.Neuroimaging.Cal[stringr::str_detect(BACH.Neuroimaging.Cal$summary, pattern="MRI")==TRUE, ]
EBACH_MRI_CAL<-MRI_CAL[stringr::str_detect(MRI_CAL$summary, pattern="#E1")==TRUE, ]
COGx_MRI_CAL<-MRI_CAL[stringr::str_detect(MRI_CAL$summary, pattern="CogEx")==TRUE, ]
#`r Blue`
Upcoming MRI Sessions:
Upcoming PET Sessions:
#_
## [1] "SubID" "Session" "snr" "session_entry"
No Pending Data Entry
TBH
Baseline Scans: No New Baseline MRIs
Follow-Up Scans: 30739MR2
PRE MPRAGE: Baseline MASTER Spreadsheets up to date
PRE DTI: Baseline MASTER DTI Spreadsheets up to date
30350MR2, 10525MR2, 10527MR2, 20370MR2, 30351MR2, 30446MR2, 20208MR2, 10881MR2, 10907MR2, 30739MR2
Nov/10/2020
Number of participants in this report: 10
First scan date in current report: Oct/29/2020
Last scan date in current report: Nov/09/2020
Days since last subject in report: 11
New Baseline: 0
New Follow-Up: 2
New Baseline: 0
New Follow-Up:4
New Baseline:0
New Follow-Up:4
KEY:
Blue meanFD > 0.5mm.
Yellow value is greater/less than 2 standard deviations from ANOVA spreadsheet site mean.
Red value is greater/less than 3 standard deviations from ANOVA spreadsheet site mean.
Formatter only values on poor quality (i.e. high FD / low snr).
New Scans / Total Scans: 4 / 304 New Baseline: 0
-Withdrew/Excluded after baseline MRI:
- 8
- 2
New Follow-Up:4
- Completed MR2: 189
- Lost to Follow-Up: 11
- Upcoming Follow-Up Assesments: 0
Pending QC: 10525, 10527, 10881, 10907
| SubID | Session | Date | cnr | fwhm_avg | snr_total | snrd_total |
|---|---|---|---|---|---|---|
| SubID | Site | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|---|
| 10525 | UPitt | nback | 2020-11-02 | 50.97860 | 2.442801 | 0.2765201 | 0.01286160 | 2.282109 | 36.95706 |
| 10527 | UPitt | nback | 2020-11-02 | 71.67916 | 2.307492 | 0.3963867 | 0.00964894 | 1.731730 | 33.14484 |
| 10881 | UPitt | nback | 2020-11-06 | 46.68880 | 2.334273 | 0.2067844 | 0.01634350 | 1.905129 | 30.83784 |
| 10907 | UPitt | nback | 2020-11-09 | 83.37973 | 2.344169 | 0.3828051 | 0.00709511 | 1.958038 | 25.89179 |
| SubID | Site | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|---|
| 10525 | UPitt | rest | 2020-11-02 | 43.42475 | 2.633828 | 0.1957918 | 0.00975158 | 2.417174 | 35.02382 |
| 10527 | UPitt | rest | 2020-11-02 | 47.61794 | 2.462831 | 0.2927003 | 0.00562625 | 1.913282 | 37.80247 |
| 10881 | UPitt | rest | 2020-11-06 | 47.02678 | 2.510437 | 0.3145864 | 0.00785112 | 2.032107 | 34.23534 |
| 10907 | UPitt | rest | 2020-11-09 | 68.75346 | 2.570164 | 0.5980894 | 0.00722871 | 2.135160 | 25.02091 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 10525 | riseenc | 2020-11-02 | 44.37800 | 2.647875 | 0.2167234 | 0.00520580 | 2.395900 | 33.13267 |
| 10527 | riseenc | 2020-11-02 | 50.79932 | 2.475575 | 0.3302052 | 0.00539323 | 1.920546 | 33.15372 |
| 10881 | riseenc | 2020-11-06 | 49.58960 | 2.535963 | 0.3505161 | 0.00822708 | 2.056646 | 28.67291 |
| 10907 | riseenc | 2020-11-09 | 74.45629 | 2.616661 | 0.6540006 | 0.00838588 | 2.126902 | 20.79921 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 10525 | riserec | 2020-11-02 | 42.85278 | 2.663693 | 0.2039061 | 0.00441241 | 2.372482 | 32.07430 |
| 10527 | riserec | 2020-11-02 | 50.08968 | 2.463805 | 0.3262183 | 0.00564003 | 1.930655 | 34.91496 |
| 10881 | riserec | 2020-11-06 | 46.40946 | 2.526287 | 0.3310918 | 0.00886594 | 2.067920 | 31.37144 |
| 10907 | riserec | 2020-11-09 | 77.62390 | 2.600525 | 0.6728749 | 0.01150210 | 2.136856 | 21.88182 |
10525, 10527, 10881, 10907
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | meanFA | meanRELrms_b1500 | tsnr_b1500 | outmean_b1500 | meanRELrms_b3000 | tsnr_b3000 | outmean_b3000 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | snr |
|---|---|---|---|---|---|---|---|
r pitt.MISSING.Monthly.pCASL
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | tsnr | outmean |
|---|---|---|---|---|---|---|---|---|
New Baseline: 0 -No Baseline MRI: 2
-Withdrew/Excluded after baseline MRI: 3
New Follow-Up: 2 - Completed MR2: 182 - Upcoming Follow-Up Assesments: 0
Pending QC: 20370, 20208
Withheld: 20032MR1, 20174MR1, 20014MR2, 20025MR2, 20022MR2, 20027MR2, 20033MR2, 20021MR2, 20028MR2, 20034MR2, 20035MR2, 20057MR2, 20041MR2, 20062MR2, 20018MR2, 20070MR2, 20058MR2, 20084MR2, 20075MR2, 20045MR2, 20050MR2, 20065MR2, 20080MR2, 20087MR2, 20093MR2, 20082MR2, 20089MR2, 20077MR2, 20096MR2, 20099MR2, 20120MR2, 20091MR2, 20088MR2, 20133MR2, 20104MR2, 20108MR2, 20121MR2, 20110MR2, 20118MR2, 20161MR2, 20146MR2, 20101MR2, 20142MR2, 20145MR2, 20085MR2, 20122MR2, 20116MR2, 20140MR2, 20132MR2, 20188MR2, 20165MR2, 20171MR2, 20123MR2, 20428MR1, 20175MR2, 20181MR2, 20138MR2, 20162MR2, 20217MR2, 20200MR2, 20158MR2, 20209MR2, 20153MR2, 20195MR2, 20203MR2, 20185MR2, 20135MR2, 20212MR2, 20210MR2, 20221MR2, 20225MR2, 20218MR2, 20224MR2, 20214MR2, 20230MR2, 20253MR2, 20284MR2, 20277MR2, 20291MR2, 20281MR2, 20304MR2, 20271MR2, 20285MR2, 20275MR2, 20246MR2, 20311MR2, 20247MR2, 20170MR2, 20308MR2, 20313MR2, 20307MR2, 20317MR2, 20241MR2, 20330MR2, 20323MR2, 20274MR2, 20258MR2, 20037MR2, 20327MR2, 20331MR2, 20343MR2, 20348MR2, 20340MR2, 20345MR2, 20347MR2, 20300MR2, 20358MR2, 20310MR2, 20349MR2, 20243MR2, 20363MR2, 20368MR2, 20353MR2, 20367MR2, 20369MR2, 20322MR2, 20374MR2, 20377MR2, 20378MR2, 20379MR2, 20370MR2, 20208MR2
| SubID | Session | Date | cnr | fwhm_avg | snr_total | snrd_total |
|---|---|---|---|---|---|---|
| SubID | Session | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|---|
| 20370 | MR2 | nback | 2020-11-02 | 62.23698 | 2.341533 | 0.3935115 | 0.0253112 | 2.002558 | 27.17298 |
| 20208 | MR2 | nback | 2020-11-05 | 40.86874 | 2.310137 | 0.1673367 | 0.0247099 | 2.065768 | 51.28577 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 20370 | rest | 2020-11-02 | 37.90827 | 2.584271 | 0.2971192 | 0.00449981 | 2.213509 | 28.82017 |
| 20208 | rest | 2020-11-05 | 33.74118 | 2.514100 | 0.1911363 | 0.00389608 | 2.322858 | 38.17902 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 20370 | riseenc | 2020-11-02 | 40.65204 | 2.588220 | 0.3396614 | 0.00576842 | 2.230378 | 27.02083 |
| 20208 | riseenc | 2020-11-05 | 36.02584 | 2.488327 | 0.1968181 | 0.00738280 | 2.310691 | 40.78728 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 20370 | riserec | 2020-11-02 | 70.47554 | 2.683673 | 0.6724141 | 0.0351928 | 2.230728 | 15.68174 |
| 20208 | riserec | 2020-11-05 | 38.45514 | 2.557809 | 0.2546659 | 0.0110227 | 2.290773 | 28.01402 |
Pending QC/Missing Sequence: 20370, 20208
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | meanFA | meanRELrms_b1500 | tsnr_b1500 | outmean_b1500 | meanRELrms_b3000 | tsnr_b3000 | outmean_b3000 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SubID | Session | Date | snr |
|---|---|---|---|
| SubID | Session | Date | tsnr | outmean |
|---|---|---|---|---|
New Baseline:0
New Follow-Up:4 Completed MR2: 70 Upcoming Follow-Up Assesments: 74
| SubID | Session | Date | cnr | fwhm_avg | snr_total | snrd_total |
|---|---|---|---|---|---|---|
| 30350 | MR2 | 2020-10-29 | NA | NA | NA | NA |
| 30351 | MR2 | 2020-11-03 | NA | NA | NA | NA |
| 30446 | MR2 | 2020-11-04 | NA | NA | NA | NA |
| 30739 | MR2 | 2020-11-09 | NA | NA | NA | NA |
| SubID | Session | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|---|
| 30350 | MR2 | nback | 2020-10-29 | 34.84884 | 2.416516 | 0.1310497 | 0.00905379 | 1.993055 | 35.0591 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 30350 | rest | 2020-10-29 | 34.5066 | 2.549336 | 0.1943078 | 0.012124 | 2.145448 | 36.85815 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 30350 | riseenc | 2020-10-29 | 39.22825 | 2.576721 | 0.2670452 | 0.00474984 | 2.140223 | 35.05923 |
| SubID | task_id | Date | dvars_nstd | fwhm_avg | fd_mean | gcor | snr | tsnr |
|---|---|---|---|---|---|---|---|---|
| 30350 | riserec | 2020-10-29 | 35.37551 | 2.590483 | 0.2068415 | 0.00742661 | 2.180388 | 32.35938 |
30350, 30351, 30446, 30739
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | meanFA | meanRELrms_b1500 | tsnr_b1500 | outmean_b1500 | meanRELrms_b3000 | tsnr_b3000 | outmean_b3000 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | subject_id | snr |
|---|---|---|---|---|---|---|---|---|
| Site | SubID | Session | Date | ScanNotes | QC3 | QC4 | subject_id | tsnr | outmean |
|---|---|---|---|---|---|---|---|---|---|
library(DT)
ADMIN.MASTER.STRUCT$PPE_1<-as.factor(ADMIN.MASTER.STRUCT$PPE_1)
MPRAGE_cnr.compar<-ggpubr::compare_means(snr_total ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(MPRAGE_cnr.compar, rownames = FALSE)
MPRAGE_fwhm_avg.compar<-ggpubr::compare_means(fwhm_avg ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(MPRAGE_fwhm_avg.compar, rownames = FALSE)
SNR.compar<-ggpubr::compare_means(snr_total ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(SNR.compar, rownames = FALSE)
MPRAGE_snrd_total.compar<-ggpubr::compare_means(snrd_total ~ Scanner, ADMIN.MASTER.STRUCT)
DT::datatable(MPRAGE_snrd_total.compar, rownames = FALSE)
meanFA.compar<-ggpubr::compare_means(meanFA ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(meanFA.compar, rownames = FALSE)
meanRELrms_b1500.compar<-ggpubr::compare_means(meanRELrms_b1500 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(meanRELrms_b1500.compar, rownames = FALSE)
tsnr_b1500compar<-ggpubr::compare_means(tsnr_b1500 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(tsnr_b1500compar, rownames = FALSE)
outmean_b1500.compar<-ggpubr::compare_means(outmean_b1500 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(outmean_b1500.compar, rownames = FALSE)
ADMIN.MASTER.STRUCT$meanRELrms_b3000
meanRELrms_b3000.compar<-ggpubr::compare_means(meanRELrms_b3000 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(meanRELrms_b3000.compar, rownames = FALSE)
tsnr_b3000compar<-ggpubr::compare_means(tsnr_b3000 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(tsnr_b3000compar, rownames = FALSE)
outmean_b3000.compar<-ggpubr::compare_means(outmean_b3000 ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(outmean_b3000.compar, rownames = FALSE)
ab<-((lm(meanFA ~ tsnr_b1500*Scanner, ADMIN.MASTER.STRUCT)))
visreg::visreg(ab, "Scanner", by="tsnr_b1500", overlay=TRUE )
dc<-(lm(meanFA ~ tsnr_b3000+Scanner, ADMIN.MASTER.STRUCT))
visreg::visreg(dc, "Scanner", by="tsnr_b3000", overlay=TRUE )
FLAIR_snr.compar<-ggpubr::compare_means(snr ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(FLAIR_snr.compar, rownames = FALSE)
pCASL_outmean.compar<-ggpubr::compare_means(outmean ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(pCASL_outmean.compar, rownames = FALSE)
pCASL_tsnr.compar<-ggpubr::compare_means(tsnr ~ Scanner , ADMIN.MASTER.STRUCT)
DT::datatable(pCASL_tsnr.compar, rownames = FALSE)
MASTER<-ADMIN.MASTER.BOLD %>% filter(task_id=="nback")
dvars_nstd.compar<-ggpubr::compare_means(dvars_nstd ~ Scanner , MASTER)
DT::datatable(dvars_nstd.compar, rownames = FALSE)
fd_mean.compar<-ggpubr::compare_means(fd_mean ~ Scanner , MASTER)
DT::datatable(fd_mean.compar, rownames = FALSE)
fwhm_avg.compar<-ggpubr::compare_means(fwhm_avg ~ Scanner , MASTER)
DT::datatable(fwhm_avg.compar, rownames = FALSE)
gcor.compar<-ggpubr::compare_means(gcor ~ Scanner , MASTER)
DT::datatable(gcor.compar, rownames = FALSE)
snr.compar<-ggpubr::compare_means(snr ~ Scanner , MASTER)
DT::datatable(snr.compar, rownames = FALSE)
tsnr.compar<-ggpubr::compare_means(tsnr ~ Scanner , MASTER)
DT::datatable(tsnr.compar, rownames = FALSE)
MASTER<-ADMIN.MASTER.BOLD %>% filter(task_id=="rest")
dvars_nstd.compar<-ggpubr::compare_means(dvars_nstd ~ Scanner , MASTER)
DT::datatable(dvars_nstd.compar, rownames = FALSE)
fd_mean.compar<-ggpubr::compare_means(fd_mean ~ Scanner , MASTER)
DT::datatable(fd_mean.compar, rownames = FALSE)
fwhm_avg.compar<-ggpubr::compare_means(fwhm_avg ~ Scanner , MASTER)
DT::datatable(fwhm_avg.compar, rownames = FALSE)
gcor.compar<-ggpubr::compare_means(gcor ~ Scanner , MASTER)
DT::datatable(gcor.compar, rownames = FALSE)
snr.compar<-ggpubr::compare_means(snr ~ Scanner , MASTER)
DT::datatable(snr.compar, rownames = FALSE)
tsnr.compar<-ggpubr::compare_means(tsnr ~ Scanner , MASTER)
DT::datatable(tsnr.compar, rownames = FALSE)
MASTER<-ADMIN.MASTER.BOLD %>% filter(task_id=="riseenc")
dvars_nstd.compar<-ggpubr::compare_means(dvars_nstd ~ Scanner , MASTER)
DT::datatable(dvars_nstd.compar, rownames = FALSE)
fd_mean.compar<-ggpubr::compare_means(fd_mean ~ Scanner , MASTER)
DT::datatable(fd_mean.compar, rownames = FALSE)
fwhm_avg.compar<-ggpubr::compare_means(fwhm_avg ~ Scanner , MASTER)
DT::datatable(fwhm_avg.compar, rownames = FALSE)
gcor.compar<-ggpubr::compare_means(gcor ~ Scanner , MASTER)
DT::datatable(gcor.compar, rownames = FALSE)
snr.compar<-ggpubr::compare_means(snr ~ Scanner , MASTER)
DT::datatable(snr.compar, rownames = FALSE)
tsnr.compar<-ggpubr::compare_means(tsnr ~ Scanner , MASTER)
DT::datatable(tsnr.compar, rownames = FALSE)
### RISE2
MASTER<-ADMIN.MASTER.BOLD %>% filter(task_id=="riserec")
dvars_nstd.compar<-ggpubr::compare_means(dvars_nstd ~ Scanner , MASTER)
DT::datatable(dvars_nstd.compar, rownames = FALSE)
fd_mean.compar<-ggpubr::compare_means(fd_mean ~ Scanner , MASTER)
DT::datatable(fd_mean.compar, rownames = FALSE)
fwhm_avg.compar<-ggpubr::compare_means(fwhm_avg ~ Scanner , MASTER)
DT::datatable(fwhm_avg.compar, rownames = FALSE)
gcor.compar<-ggpubr::compare_means(gcor ~ Scanner , MASTER)
DT::datatable(gcor.compar, rownames = FALSE)
snr.compar<-ggpubr::compare_means(snr ~ Scanner , MASTER)
DT::datatable(snr.compar, rownames = FALSE)
tsnr.compar<-ggpubr::compare_means(tsnr ~ Scanner , MASTER)
DT::datatable(tsnr.compar, rownames = FALSE)
** Issue with DTI preceed recent issues.
pCASL <- ADMIN.MASTER.STRUCT %>% select(SubID,Site,Session, Scanner, WeeklyReport, tsnr, outmean)
pCASL$Scanner<-as.factor(pCASL$Scanner)
mod<-(lm(tsnr~ WeeklyReport-1, pCASL))
mod.mean<-emmeans(mod, "WeeklyReport")
pairs(mod.mean)
mod<-(lm(tsnr~ Scanner-1, pCASL))
mod.mean<-emmeans(mod, "Scanner")
pairs(mod.mean)
mod<-(lm(tsnr~ WeeklyReport*Scanner, pCASL))
mod.mean<-emmeans(mod, "Scanner", by="WeeklyReport")
pairs(mod.mean)
mod<-(lm(tsnr~ WeeklyReport*Scanner, pCASL))
mod.mean<-emmeans(mod, "WeeklyReport", by="Scanner")
pairs(mod.mean)
PITT<-FLAIR %>% filter(Site=="UPitt") %>% select(SubID,Site ,Scanner, WeeklyReport,snr )
PITT$Scanner<-as.factor(PITT$Scanner)
PITT$WeeklyReport<-as.factor(PITT$WeeklyReport)
mod<-(lm(snr~ WeeklyReport, PITT))
mod.mean<-emmeans(mod, "WeeklyReport")
pairs(mod.mean)
mod<-(lm(snr~ Scanner, PITT))
mod.mean<-emmeans(mod, "Scanner")
pairs(mod.mean)
mod<-(lm(snr~ Scanner*WeeklyReport, PITT))
mod.mean<-emmeans(mod, "WeeklyReport", by="Scanner")
pairs(mod.mean)
mod<-(lm(snr~ Scanner*WeeklyReport, PITT))
mod.mean<-emmeans(mod, "Scanner", by="WeeklyReport")
pairs(mod.mean)
Pending or Excluded: 10036MR1, 10057MR2, 20032MR1, 10239MR1, 10299MR1, 10185MR1, 10383MR1, 10004MR2, 10013MR2, 20174MR1, 10012MR2, 10023MR2, 10019MR2, 10017MR2, 10026MR2, 10030MR2, 10044MR2, 10043MR2, 10055MR2, 30001MR2, 10041MR2, 30012MR2, 10053MR2, 30014MR2, 10083MR2, 10064MR2, 30017MR2, 10059MR2, 10062MR2, 30035MR2, 30037MR2, 10079MR2, 10066MR2, 10082MR2, 30059MR2, 10541MR1, 10088MR2, 10622MR1, 20014MR2, 20025MR2, 20022MR2, 10085MR2, 20027MR2, 10113MR2, 20033MR2, 10107MR2, 30080MR2, 10623MR1, 20021MR2, 20028MR2, 30071MR2, 20034MR2, 30031MR2, 20035MR2, 10136MR2, 30093MR2, 30042MR2, 10110MR2, 30072MR2, 30040MR2, 10141MR2, 10168MR2, 20057MR2, 20041MR2, 10149MR2, 30043MR2, 10123MR2, 20062MR2, 10151MR2, 30117MR2, 20018MR2, 10789MR1, 10135MR2, 10098MR2, 20070MR2, 10203MR2, 10190MR2, 30123MR2, 30136MR2, 20058MR2, 20084MR2, 10182MR2, 20075MR2, 20045MR2, 10214MR2, 10257MR2, 20050MR2, 20065MR2, 30127MR2, 10253MR2, 30148MR2, 30152MR2, 10227MR2, 10150MR2, 20080MR2, 10218MR2, 10238MR2, 10226MR2, 20087MR2, 30161MR2, 10266MR2, 20093MR2, 20082MR2, 20089MR2, 30163MR2, 10273MR2, 20077MR2, 20096MR2, 20099MR2, 20120MR2, 10302MR2, 20091MR2, 20088MR2, 10125MR2, 10319MR2, 30173MR2, 20133MR2, 10339MR2, 20104MR2, 30177MR2, 30146MR2, 10297MR2, 10322MR2, 20108MR2, 20121MR2, 10272MR2, 20110MR2, 10329MR2, 10356MR2, 20118MR2, 20161MR2, 20146MR2, 10325MR2, 20101MR2, 20142MR2, 20145MR2, 10375MR2, 20085MR2, 20122MR2, 20116MR2, 20140MR2, 30235MR2, 10334MR2, 20132MR2, 30222MR2, 10372MR2, 30223MR2, 10392MR2, 20188MR2, 30250MR2, 20165MR2, 20171MR2, 20123MR2, 10384MR2, 20428MR1, 10341MR2, 20175MR2, 20181MR2, 20138MR2, 10401MR2, 20162MR2, 20217MR2, 20200MR2, 20158MR2, 10399MR2, 10404MR2, 10402MR2, 20209MR2, 10436MR2, 20153MR2, 20195MR2, 10396MR2, 20203MR2, 10418MR2, 30249MR2, 30283MR2, 20185MR2, 10417MR2, 20135MR2, 30321MR2, 10470MR2, 30236MR2, 20212MR2, 20210MR2, 20221MR2, 20225MR2, 20218MR2, 30338MR2, 20224MR2, 30341MR2, 20214MR2, 30349MR2, 10475MR2, 10477MR2, 20230MR2, 10476MR2, 20253MR2, 20284MR2, 20277MR2, 20291MR2, 20281MR2, 20304MR2, 20271MR2, 20285MR2, 20275MR2, 20246MR2, 20311MR2, 20247MR2, 20170MR2, 20308MR2, 20313MR2, 20307MR2, 20317MR2, 20241MR2, 20330MR2, 20323MR2, 20274MR2, 20258MR2, 20037MR2, 20327MR2, 20331MR2, 10757MR2, 20343MR2, 10582MR2, 20348MR2, 10697MR2, 20340MR2, 10568MR2, 10792MR2, 30556MR2, 10776MR2, 10796MR2, 20345MR2, 30428MR2, 30547MR2, 30585MR2, 30542MR2, 10807MR2, 20347MR2, 30438MR2, 10593MR2, 20300MR2, 30589MR2, 10561MR2, 10833MR2, 30554MR2, 20358MR2, 30550MR2, 10711MR2, 20310MR2, 30649MR2, 30666MR2, 10741MR2, 30526MR2, 10831MR2, 30624MR2, 30574MR2, 10689MR2, 20349MR2, 30709MR2, 10466MR2, 20243MR2, 20363MR2, 10721MR2, 30764MR2, 10554MR2, 10815MR2, 30404MR2, 30681MR2, 30583MR2, 10861MR2, 20368MR2, 30449MR2, 10599MR2, 10528MR2, 20353MR2, 30725MR2, 10449MR2, 30701MR2, 20367MR2, 30711MR2, 10848MR2, 10565MR2, 20369MR2, 30553MR2, 10727MR2, 20322MR2, 10499MR2, 10410MR2, 20374MR2, 30369MR2, 10851MR2, 20377MR2, 30795MR2, 10909MR2, 10896MR2, 20378MR2, 30284MR2, 30397MR2, 10515MR2, 20379MR2, 30350MR2, 30448MR2, 10512MR2, 10525MR2, 10527MR2, 20370MR2, 30351MR2, 30446MR2, 20208MR2, 10881MR2, 10919MR2, 10907MR2, 30739MR2
Excluded from Report: 10036MR1, 10057MR2, 30059MR1, 20032MR1, 10239MR1, 10299MR1, 10185MR1, 10383MR1, 10004MR2, 10013MR2, 20174MR1, 10012MR2, 10023MR2, 10019MR2, 10017MR2, 10026MR2, 10030MR2, 10044MR2, 10043MR2, 10055MR2, 30001MR2, 10041MR2, 10515MR1, 30012MR2, 10053MR2, 30014MR2, 10083MR2, 10064MR2, 30017MR2, 10059MR2, 10062MR2, 30035MR2, 30037MR2, 10079MR2, 10066MR2, 10082MR2, 30059MR2, 10541MR1, 10088MR2, 10622MR1, 20014MR2, 20025MR2, 20022MR2, 10085MR2, 20027MR2, 10113MR2, 20033MR2, 10107MR2, 30080MR2, 10623MR1, 20021MR2, 20028MR2, 30071MR2, 20034MR2, 30031MR2, 20035MR2, 30405MR1, 10642MR1, 10136MR2, 30093MR2, 30042MR2, 10110MR2, 30072MR2, 30040MR2, 10141MR2, 10168MR2, 20057MR2, 20041MR2, 10149MR2, 30043MR2, 10123MR2, 20062MR2, 10151MR2, 30117MR2, 20018MR2, 10789MR1, 10135MR2, 10098MR2, 20070MR2, 10203MR2, 10190MR2, 30123MR2, 30136MR2, 20058MR2, 20084MR2, 10182MR2, 20075MR2, 20045MR2, 10214MR2, 10257MR2, 20050MR2, 20065MR2, 30127MR2, 10253MR2, 30148MR2, 30152MR2, 10227MR2, 10150MR2, 20080MR2, 10218MR2, 10238MR2, 10226MR2, 20087MR2, 30161MR2, 10266MR2, 20093MR2, 20082MR2, 20089MR2, 30163MR2, 10273MR2, 20077MR2, 20096MR2, 20099MR2, 20120MR2, 10302MR2, 20091MR2, 20088MR2, 10125MR2, 10319MR2, 30173MR2, 20133MR2, 10339MR2, 20104MR2, 30177MR2, 30146MR2, 10297MR2, 10322MR2, 20108MR2, 20121MR2, 10272MR2, 20110MR2, 10329MR2, 10356MR2, 20118MR2, 20161MR2, 20146MR2, 10325MR2, 20101MR2, 20142MR2, 20145MR2, 10375MR2, 20085MR2, 20122MR2, 20116MR2, 20140MR2, 30235MR2, 10334MR2, 20132MR2, 30222MR2, 10372MR2, 30223MR2, 10392MR2, 20188MR2, 30250MR2, 20165MR2, 20171MR2, 20123MR2, 10384MR2, 20428MR1, 10341MR2, 20175MR2, 20181MR2, 20138MR2, 10401MR2, 20162MR2, 20217MR2, 20200MR2, 20158MR2, 10399MR2, 10404MR2, 10402MR2, 20209MR2, 10436MR2, 20153MR2, 20195MR2, 10396MR2, 20203MR2, 10418MR2, 30249MR2, 30283MR2, 20185MR2, 10417MR2, 20135MR2, 30321MR2, 10470MR2, 30236MR2, 20212MR2, 20210MR2, 20221MR2, 20225MR2, 20218MR2, 30338MR2, 20224MR2, 30341MR2, 20214MR2, 30349MR2, 10475MR2, 10477MR2, 20230MR2, 10476MR2, 20253MR2, 20284MR2, 20277MR2, 20291MR2, 20281MR2, 20304MR2, 20271MR2, 20285MR2, 20275MR2, 20246MR2, 20311MR2, 20247MR2, 20170MR2, 20308MR2, 20313MR2, 20307MR2, 20317MR2, 20241MR2, 20330MR2, 20323MR2, 20274MR2, 20258MR2, 20037MR2, 20327MR2, 20331MR2, 10757MR2, 20343MR2, 10582MR2, 20348MR2, 10697MR2, 20340MR2, 10568MR2, 10792MR2, 30556MR2, 10776MR2, 10796MR2, 20345MR2, 30428MR2, 30547MR2, 30585MR2, 30542MR2, 10807MR2, 20347MR2, 30438MR2, 10593MR2, 20300MR2, 30589MR2, 10561MR2, 10833MR2, 30554MR2, 20358MR2, 30550MR2, 10711MR2, 20310MR2, 30649MR2, 30666MR2, 10741MR2, 30526MR2, 10831MR2, 30624MR2, 30574MR2, 10689MR2, 20349MR2, 30709MR2, 10466MR2, 20243MR2, 20363MR2, 10721MR2, 30764MR2, 10554MR2, 10815MR2, 30404MR2, 30681MR2, 30583MR2, 10861MR2, 20368MR2, 30449MR2, 10599MR2, 10528MR2, 20353MR2, 30725MR2, 10449MR2, 30701MR2, 20367MR2, 30711MR2, 10848MR2, 10565MR2, 20369MR2, 30553MR2, 10727MR2, 20322MR2, 10499MR2, 10410MR2, 20374MR2, 30369MR2, 10851MR2, 20377MR2, 30795MR2, 10909MR2, 10896MR2, 20378MR2, 30284MR2, 30397MR2, 10515MR2, 20379MR2, 30350MR2, 30448MR2, 10512MR2, 10525MR2, 10527MR2, 20370MR2, 30351MR2, 30446MR2, 20208MR2, 10881MR2, 10919MR2, 10907MR2, 30739MR2
Excluded from Report: 10036MR1, 10057MR2, 10064MR1, 30059MR1, 20032MR1, 10239MR1, 10299MR1, 10185MR1, 10383MR1, 30235MR1, 10004MR2, 10013MR2, 20174MR1, 10012MR2, 10023MR2, 10019MR2, 10017MR2, 10026MR2, 10030MR2, 10044MR2, 10043MR2, 10055MR2, 30001MR2, 10041MR2, 10515MR1, 30012MR2, 10053MR2, 30014MR2, 10083MR2, 10064MR2, 30017MR2, 10059MR2, 10062MR2, 30035MR2, 30037MR2, 10079MR2, 10066MR2, 10082MR2, 30059MR2, 10541MR1, 10088MR2, 10622MR1, 20014MR2, 20025MR2, 20022MR2, 10085MR2, 20027MR2, 10113MR2, 20033MR2, 10107MR2, 30080MR2, 10623MR1, 20021MR2, 20028MR2, 30071MR2, 20034MR2, 30031MR2, 20035MR2, 30405MR1, 10642MR1, 10136MR2, 30093MR2, 30042MR2, 10110MR2, 30072MR2, 30040MR2, 10141MR2, 10168MR2, 20057MR2, 20041MR2, 10149MR2, 30043MR2, 10123MR2, 20062MR2, 10151MR2, 30117MR2, 20018MR2, 10789MR1, 10135MR2, 10098MR2, 10741MR1, 20070MR2, 10203MR2, 10190MR2, 30123MR2, 30136MR2, 20058MR2, 20084MR2, 10182MR2, 20075MR2, 20045MR2, 10214MR2, 10257MR2, 20050MR2, 20065MR2, 30127MR2, 10253MR2, 30148MR2, 30152MR2, 10227MR2, 10150MR2, 20080MR2, 10218MR2, 10238MR2, 10226MR2, 20087MR2, 30161MR2, 10266MR2, 20093MR2, 20082MR2, 20089MR2, 30163MR2, 10273MR2, 20077MR2, 10909MR1, 20096MR2, 20099MR2, 20120MR2, 10302MR2, 20091MR2, 20088MR2, 10125MR2, 10319MR2, 30173MR2, 20133MR2, 10339MR2, 20104MR2, 30177MR2, 30146MR2, 10297MR2, 10322MR2, 20108MR2, 20121MR2, 10272MR2, 20110MR2, 10329MR2, 10356MR2, 20118MR2, 20161MR2, 20146MR2, 10325MR2, 20101MR2, 20142MR2, 20145MR2, 10375MR2, 30927MR1, 20085MR2, 20122MR2, 20116MR2, 20140MR2, 30235MR2, 10334MR2, 20132MR2, 30222MR2, 10372MR2, 30223MR2, 10392MR2, 20188MR2, 30250MR2, 20165MR2, 20171MR2, 20123MR2, 10384MR2, 20428MR1, 10341MR2, 20175MR2, 20181MR2, 20138MR2, 10401MR2, 20162MR2, 20217MR2, 20200MR2, 20158MR2, 10399MR2, 10404MR2, 10402MR2, 20209MR2, 10436MR2, 20153MR2, 20195MR2, 10396MR2, 20203MR2, 10418MR2, 30249MR2, 30283MR2, 20185MR2, 10417MR2, 20135MR2, 30321MR2, 10470MR2, 30236MR2, 20212MR2, 20210MR2, 20221MR2, 20225MR2, 20218MR2, 30338MR2, 20224MR2, 30341MR2, 20214MR2, 30349MR2, 10475MR2, 10477MR2, 20230MR2, 10476MR2, 20253MR2, 20284MR2, 20277MR2, 20291MR2, 20281MR2, 20304MR2, 20271MR2, 20285MR2, 20275MR2, 20246MR2, 20311MR2, 20247MR2, 20170MR2, 20308MR2, 20313MR2, 20307MR2, 20317MR2, 20241MR2, 20330MR2, 20323MR2, 20274MR2, 20258MR2, 20037MR2, 20327MR2, 20331MR2, 10757MR2, 20343MR2, 10582MR2, 20348MR2, 10697MR2, 20340MR2, 10568MR2, 10792MR2, 30556MR2, 10776MR2, 10796MR2, 20345MR2, 30428MR2, 30547MR2, 30585MR2, 30542MR2, 10807MR2, 20347MR2, 30438MR2, 10593MR2, 20300MR2, 30589MR2, 10561MR2, 10833MR2, 30554MR2, 20358MR2, 30550MR2, 10711MR2, 20310MR2, 30649MR2, 30666MR2, 10741MR2, 30526MR2, 10831MR2, 30624MR2, 30574MR2, 10689MR2, 20349MR2, 30709MR2, 10466MR2, 20243MR2, 20363MR2, 10721MR2, 30764MR2, 10554MR2, 10815MR2, 30404MR2, 30681MR2, 30583MR2, 10861MR2, 20368MR2, 30449MR2, 10599MR2, 10528MR2, 20353MR2, 30725MR2, 10449MR2, 30701MR2, 20367MR2, 30711MR2, 10848MR2, 10565MR2, 20369MR2, 30553MR2, 10727MR2, 20322MR2, 10499MR2, 10410MR2, 20374MR2, 30369MR2, 10851MR2, 20377MR2, 30795MR2, 10909MR2, 10896MR2, 20378MR2, 30284MR2, 30397MR2, 10515MR2, 20379MR2, 30350MR2, 30448MR2, 10512MR2, 10525MR2, 10527MR2, 20370MR2, 30351MR2, 30446MR2, 20208MR2, 10881MR2, 10919MR2, 10907MR2, 30739MR2
Excluded from Report: 10012MR1, 10036MR1, 10041MR1, 10057MR2, 10064MR1, 30059MR1, 20032MR1, 10238MR1, 10239MR1, 10273MR1, 10266MR1, 10299MR1, 10185MR1, 10341MR1, 10383MR1, 30235MR1, 10004MR2, 10013MR2, 20174MR1, 10012MR2, 10023MR2, 10019MR2, 10017MR2, 10026MR2, 10030MR2, 10044MR2, 10043MR2, 10055MR2, 30001MR2, 10041MR2, 10515MR1, 30012MR2, 10053MR2, 30014MR2, 10083MR2, 10064MR2, 30017MR2, 10059MR2, 10062MR2, 30035MR2, 30037MR2, 10079MR2, 10066MR2, 10082MR2, 30059MR2, 10541MR1, 10088MR2, 10622MR1, 20014MR2, 20025MR2, 20022MR2, 10085MR2, 20027MR2, 10113MR2, 20033MR2, 10107MR2, 30080MR2, 10623MR1, 20021MR2, 20028MR2, 30071MR2, 20034MR2, 30031MR2, 20035MR2, 30405MR1, 10642MR1, 10136MR2, 30093MR2, 30042MR2, 10110MR2, 30072MR2, 30040MR2, 10141MR2, 10168MR2, 20057MR2, 20041MR2, 10149MR2, 30043MR2, 10123MR2, 20062MR2, 10151MR2, 30117MR2, 20018MR2, 10789MR1, 10135MR2, 10098MR2, 10741MR1, 20070MR2, 10815MR1, 10203MR2, 10190MR2, 30123MR2, 30136MR2, 20058MR2, 20084MR2, 10182MR2, 20075MR2, 20045MR2, 10214MR2, 10257MR2, 20050MR2, 20065MR2, 30127MR2, 10253MR2, 30148MR2, 30152MR2, 10227MR2, 10150MR2, 10840MR1, 20080MR2, 10218MR2, 10238MR2, 10226MR2, 20087MR2, 30161MR2, 10266MR2, 20093MR2, 20082MR2, 20089MR2, 30163MR2, 10273MR2, 20077MR2, 10909MR1, 20096MR2, 20099MR2, 20120MR2, 10302MR2, 20091MR2, 20088MR2, 10125MR2, 10319MR2, 30173MR2, 20133MR2, 10339MR2, 20104MR2, 30177MR2, 30146MR2, 10297MR2, 10322MR2, 20108MR2, 20121MR2, 10272MR2, 20110MR2, 10329MR2, 10356MR2, 20118MR2, 20161MR2, 20146MR2, 10325MR2, 20101MR2, 20142MR2, 20145MR2, 10375MR2, 30927MR1, 20085MR2, 20122MR2, 20116MR2, 20140MR2, 30235MR2, 10334MR2, 20132MR2, 30222MR2, 10372MR2, 30223MR2, 10392MR2, 20188MR2, 30250MR2, 20165MR2, 20171MR2, 20123MR2, 10384MR2, 20428MR1, 10341MR2, 20175MR2, 20181MR2, 20138MR2, 10401MR2, 20162MR2, 20217MR2, 20200MR2, 20158MR2, 10399MR2, 10404MR2, 10402MR2, 20209MR2, 10436MR2, 20153MR2, 20195MR2, 10396MR2, 20203MR2, 10418MR2, 30249MR2, 30283MR2, 20185MR2, 10417MR2, 20135MR2, 30321MR2, 10470MR2, 30236MR2, 31069MR1, 20212MR2, 20210MR2, 20221MR2, 20225MR2, 20218MR2, 30338MR2, 20224MR2, 30341MR2, 20214MR2, 30349MR2, 10475MR2, 10477MR2, 20230MR2, 10476MR2, 20253MR2, 20284MR2, 20277MR2, 20291MR2, 20281MR2, 20304MR2, 20271MR2, 20285MR2, 20275MR2, 20246MR2, 20311MR2, 20247MR2, 20170MR2, 20308MR2, 20313MR2, 20307MR2, 20317MR2, 20241MR2, 20330MR2, 20323MR2, 20274MR2, 20258MR2, 20037MR2, 20327MR2, 20331MR2, 10757MR2, 20343MR2, 10582MR2, 20348MR2, 10697MR2, 20340MR2, 10568MR2, 10792MR2, 30556MR2, 10776MR2, 10796MR2, 20345MR2, 30428MR2, 30547MR2, 30585MR2, 30542MR2, 10807MR2, 20347MR2, 30438MR2, 10593MR2, 20300MR2, 30589MR2, 10561MR2, 10833MR2, 30554MR2, 20358MR2, 30550MR2, 10711MR2, 20310MR2, 30649MR2, 30666MR2, 10741MR2, 30526MR2, 10831MR2, 30624MR2, 30574MR2, 10689MR2, 20349MR2, 30709MR2, 10466MR2, 20243MR2, 20363MR2, 10721MR2, 30764MR2, 10554MR2, 10815MR2, 30404MR2, 30681MR2, 30583MR2, 10861MR2, 20368MR2, 30449MR2, 10599MR2, 10528MR2, 20353MR2, 30725MR2, 10449MR2, 30701MR2, 20367MR2, 30711MR2, 10848MR2, 10565MR2, 20369MR2, 30553MR2, 10727MR2, 20322MR2, 10499MR2, 10410MR2, 20374MR2, 30369MR2, 10851MR2, 20377MR2, 30795MR2, 10909MR2, 10896MR2, 20378MR2, 30284MR2, 30397MR2, 10515MR2, 20379MR2, 30350MR2, 30448MR2, 10512MR2, 10525MR2, 10527MR2, 20370MR2, 30351MR2, 30446MR2, 20208MR2, 10881MR2, 10919MR2, 10907MR2, 30739MR2
library(stringr)
library(dplyr)
source("/Volumes/IGNITE_Imaging/QC_Output/R_IGNITE/RedCap/PRE/Data/IGNITEDatabase-IGNITEBaselineMRIRep_R_2020-10-08_1259.r")
PRE_MRI<-data
PRE_MRI$mri_sum_scan_time<-as.character(PRE_MRI$mri_sum_scan_time)
rm(data)
#table(PRE_MRI$mri_sum_scan_time %in% RedCap$mri_sum_scan_time)
RedCap_PRE<-full_join(RedCap, PRE_MRI, by="mri_sum_scan_time")
RedCap_PRE<-RedCap_PRE[complete.cases(RedCap_PRE$mri_sum_scan_time),]
RedCap_PRE<-RedCap_PRE[!(RedCap_PRE$mri_sum_scan_time==""),]
RedCap_PRE$mri_sum_scan_time<-as.POSIXct(RedCap_PRE$mri_sum_scan_time,tz=Sys.timezone())
library(stringr)
library(dplyr)
source("/Volumes/IGNITE_Imaging/QC_Output/R_IGNITE/RedCap/POST/Data/IGNITEDatabase-IGNITEPostMRIReport_R_2020-10-08_1317.r")
POST_MRI<-data
POST_MRI$mri_sum_scan_time <- as.character(POST_MRI$mri_sum_scan_time)
#table(POST_MRI$mri_sum_scan_time %in% RedCap$mri_sum_scan_time)
RedCap_PRE<-RedCap_PRE[!(RedCap_PRE$mri_sum_scan_time==""),]
rm(data)
RedCap_POST<-full_join(RedCap_PRE, POST_MRI, by="mri_sum_scan_time")
RedCap_PRE<-RedCap_PRE[!(RedCap_PRE$mri_sum_scan_time==""),]
RedCap %>% select(SubID,Session, mri_, vo2_age,mri_sum_1back_rt, mri_sum_1back_acc, mri_sum_2back_rt ,mri_sum_2back_acc )
df<-c("SubID","mri_site",
"mri_sum_1back_rt", "mri_sum_1back_acc", "mri_sum_2back_rt" ,"mri_sum_2back_acc" )
DATA_M1<-RedCap[df]
DATA_M1<-melt(DATA_M1, id.vars =c("SubID", "Site", "Sex"), measure.vars = c( "mri_sum_1back_acc"))
DATA_M1$Site<-as.factor(DATA_M1$Site)
DATA_M1$Sex<-as.factor(DATA_M1$Sex)
ggstatsplot::grouped_ggbetweenstats(
data = DATA_M1,
x = Site,
y = value,
grouping.var = Sex,
nboot = 10,
effsize.type = "biased", # type of effect size
pairwise.comparisons = TRUE,
outlier.coef = 3,
messages = FALSE,
outlier.tagging = TRUE,
outlier.label = SubID,
mean.plotting = TRUE,
p.adjust.method = "bonferroni",
ylab = "value",
title.prefix = "1-Back ACC")