library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.3
## -- Attaching packages ---------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 1.0.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts ------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(faraway)
## Warning: package 'faraway' was built under R version 3.6.3
library(lme4)
## Warning: package 'lme4' was built under R version 3.6.2
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.6.3
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
Reading data psid.txt:
psid <- read.delim("./psid.txt", header = TRUE)
attach(psid)
head(psid)
## age educ sex income year person
## 1 31 12 M 6000 68 1
## 2 31 12 M 5300 69 1
## 3 31 12 M 5200 70 1
## 4 31 12 M 6900 71 1
## 5 31 12 M 7500 72 1
## 6 31 12 M 8000 73 1
ggplot of 20 subjects revealed that some individuals have a slowly increasing income, specially if having steady employment in the same job.
psid20 <- filter(psid, person <= 20)
library(ggplot2)
ggplot(psid20, aes(x=year, y=income))+geom_line()+facet_wrap(~ person)
I found this one specially interesting, because it shows pattern of difference between men’s and women’s incomes.
ggplot(psid20, aes(x=year, y=income+100, group=person)) +geom_line() + facet_wrap(~ sex) + scale_y_log10()