Aditi Chakraborty
Webel COE Data science batch
Import Library:-
library(dplyr)
Attaching package: 㤼㸱dplyr㤼㸲
The following objects are masked from 㤼㸱package:stats㤼㸲:
filter, lag
The following objects are masked from 㤼㸱package:base㤼㸲:
intersect, setdiff, setequal, union
Loading mtcars dataset
data("mtcars")
Print the 1st 6 rows
head(mtcars)
Display of complete structure of mtcars dataset
str(mtcars)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
Data Manipulation and Analysis
1. Get the unique count of cars
mtcars %>%
summarise(count_Of_car = n_distinct(rownames(mtcars)))
2. Get mean of weight by cylinder
mtcars %>% group_by(cyl) %>% summarise(mean_weight = mean(wt))
`summarise()` ungrouping output (override with `.groups` argument)
3. Get the no of cars by gear
mtcars %>% group_by(gear) %>% summarise(No_Of_Cars=n())
`summarise()` ungrouping output (override with `.groups` argument)
4. Get mean mpg by gear and carb and cyl
Mean mpg by gear
mtcars %>% group_by(gear) %>%
summarise(Mean_MPG = mean(mpg))
`summarise()` ungrouping output (override with `.groups` argument)
Mean mpg by carb
mtcars %>% group_by(carb) %>%
summarise(Mean_MPG = mean(mpg))
`summarise()` ungrouping output (override with `.groups` argument)
Mean mpg by cyl
mtcars %>% group_by(cyl) %>%
summarise(Mean_MPG = mean(mpg))
`summarise()` ungrouping output (override with `.groups` argument)
Mean mpg by gear and carb and cyl
mtcars %>% group_by(gear,carb,cyl) %>%
summarise(Mean_MPG = mean(mpg))
`summarise()` regrouping output by 'gear', 'carb' (override with `.groups` argument)
5. Which car has the max hp ?
MAX_HP <- max(mtcars$hp)
print("Maximum HP is")
[1] "Maximum HP is"
print(MAX_HP)
[1] 335
mtcars %>% filter(hp==MAX_HP) %>%
select(disp,gear,hp)
Insight: Maserati Bora has the maximum HP 335
6. Which car has the minimum displacement ?
Min_DISP <- min(mtcars$disp)
mtcars %>% filter(disp==Min_DISP) %>%
select(disp,gear,hp)
Insight: Toyota Corolla has the minimum displacement 71.1
7. Get summary of the data
summary(mtcars)
mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
drat wt qsec
Min. :2.760 Min. :1.513 Min. :14.50
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89
Median :3.695 Median :3.325 Median :17.71
Mean :3.597 Mean :3.217 Mean :17.85
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
Max. :4.930 Max. :5.424 Max. :22.90
vs am gear
Min. :0.0000 Min. :0.0000 Min. :3.000
1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000
Median :0.0000 Median :0.0000 Median :4.000
Mean :0.4375 Mean :0.4062 Mean :3.688
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000
Max. :1.0000 Max. :1.0000 Max. :5.000
carb
Min. :1.000
1st Qu.:2.000
Median :2.000
Mean :2.812
3rd Qu.:4.000
Max. :8.000
8. Out of all the cars with 4 cyl which car has max displ and min hp?
cars with 4 cyl
cyl_4_car <- filter(mtcars,cyl==4)
cyl_4_car %>% select(cyl,disp,hp)
cars having maximum disp with 4 cyl
cyl_4_car %>% filter(disp==max(cyl_4_car$disp)) %>%
select(cyl,disp,hp)
NA
Insight: Merc 240D which has 4 cylinder having the maximum displacement 146.7
cars having min HP with 4 cyl
cyl_4_car %>% filter(hp==min(cyl_4_car$hp)) %>%
select(cyl,disp,hp)
Insight: Honda Civic which has 4 cylinder having minimum HP 52
9. Out of all the cars with 4 gear and >=4 cyl which car has max displ and min hp?
cars with 4 gear and cyl>=4
gr_cl_4_car <- filter(mtcars,gear==4,cyl>=4)
gr_cl_4_car %>% select(gear,cyl,hp,disp)
Cars having maximum disp with 4 gear and cyl>=4
gr_cl_4_car %>% filter(disp==max(gr_cl_4_car$disp)) %>%
select(gear,cyl,hp,disp)
Insight: Merc 280 and Merc 280C which have 6 cyl and 4 gear having maximum disp 167.6
cars having minimum HP with 4 gear and cyl>=4
gr_cl_4_car %>% filter(hp==min(gr_cl_4_car$hp)) %>%
select(gear,cyl,hp,disp)
Insight: Honda Civic which have 4 cyl and 4 gear having minimum HP 52
LS0tDQp0aXRsZTogIm10Y2FycyBBc3NpZ25tZW50XzEgIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQoNCi0tLQ0KDQojIyBBZGl0aSBDaGFrcmFib3J0eSANCiMjIyBXZWJlbCBDT0UgRGF0YSBzY2llbmNlIGJhdGNoDQoNCg0KIyMjIEltcG9ydCBMaWJyYXJ5Oi0NCmBgYHtyfQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQoNCg0KIyMjIExvYWRpbmcgbXRjYXJzIGRhdGFzZXQNCg0KYGBge3J9DQpkYXRhKCJtdGNhcnMiKQ0KYGBgDQoNCiMjIyBQcmludCB0aGUgMXN0IDYgcm93cw0KYGBge3J9DQpoZWFkKG10Y2FycykNCmBgYA0KDQojIyMgRGlzcGxheSBvZiBjb21wbGV0ZSBzdHJ1Y3R1cmUgb2YgbXRjYXJzIGRhdGFzZXQNCmBgYHtyfQ0Kc3RyKG10Y2FycykNCmBgYA0KIyAgRGF0YSBNYW5pcHVsYXRpb24gYW5kIEFuYWx5c2lzDQoNCiMjIDEuIEdldCB0aGUgdW5pcXVlIGNvdW50IG9mIGNhcnMNCmBgYHtyfQ0KbXRjYXJzICU+JQ0KICBzdW1tYXJpc2UoY291bnRfT2ZfY2FyID0gbl9kaXN0aW5jdChyb3duYW1lcyhtdGNhcnMpKSkNCmBgYA0KDQojIyAyLiBHZXQgbWVhbiBvZiB3ZWlnaHQgYnkgY3lsaW5kZXINCmBgYHtyfQ0KbXRjYXJzICU+JSBncm91cF9ieShjeWwpICU+JSBzdW1tYXJpc2UobWVhbl93ZWlnaHQgPSBtZWFuKHd0KSkNCmBgYA0KDQojIyAzLiBHZXQgdGhlIG5vIG9mIGNhcnMgYnkgZ2Vhcg0KYGBge3J9DQptdGNhcnMgJT4lIGdyb3VwX2J5KGdlYXIpICU+JSBzdW1tYXJpc2UoTm9fT2ZfQ2Fycz1uKCkpDQpgYGANCg0KIyMgNC4gR2V0IG1lYW4gbXBnIGJ5IGdlYXIgYW5kIGNhcmIgYW5kIGN5bA0KDQojIyMgTWVhbiBtcGcgYnkgZ2VhciANCmBgYHtyfQ0KbXRjYXJzICU+JSBncm91cF9ieShnZWFyKSAlPiUNCiAgc3VtbWFyaXNlKE1lYW5fTVBHID0gbWVhbihtcGcpKQ0KDQpgYGANCiMjIyBNZWFuIG1wZyBieSBjYXJiIA0KYGBge3J9DQptdGNhcnMgJT4lIGdyb3VwX2J5KGNhcmIpICU+JQ0KICBzdW1tYXJpc2UoTWVhbl9NUEcgPSBtZWFuKG1wZykpDQpgYGANCiMjIyBNZWFuIG1wZyBieSBjeWwgDQpgYGB7cn0NCm10Y2FycyAlPiUgZ3JvdXBfYnkoY3lsKSAlPiUNCiAgc3VtbWFyaXNlKE1lYW5fTVBHID0gbWVhbihtcGcpKQ0KYGBgDQoNCiMjIyBNZWFuIG1wZyBieSBnZWFyIGFuZCBjYXJiIGFuZCBjeWwNCmBgYHtyfQ0KbXRjYXJzICU+JSBncm91cF9ieShnZWFyLGNhcmIsY3lsKSAlPiUNCiAgc3VtbWFyaXNlKE1lYW5fTVBHID0gbWVhbihtcGcpKQ0KYGBgDQoNCg0KIyMgNS4gV2hpY2ggY2FyIGhhcyB0aGUgbWF4IGhwID8NCmBgYHtyfQ0KTUFYX0hQIDwtIG1heChtdGNhcnMkaHApDQpwcmludCgiTWF4aW11bSBIUCBpcyIpDQpwcmludChNQVhfSFApDQpgYGANCmBgYHtyfQ0KbXRjYXJzICU+JSBmaWx0ZXIoaHA9PU1BWF9IUCkgJT4lDQogIHNlbGVjdChkaXNwLGdlYXIsaHApDQpgYGANCg0KIyMjIEluc2lnaHQ6IE1hc2VyYXRpIEJvcmEgaGFzIHRoZSBtYXhpbXVtIEhQIDMzNQ0KDQojIyA2LiBXaGljaCBjYXIgaGFzIHRoZSBtaW5pbXVtIGRpc3BsYWNlbWVudCA/DQoNCmBgYHtyfQ0KTWluX0RJU1AgPC0gbWluKG10Y2FycyRkaXNwKQ0KbXRjYXJzICU+JSBmaWx0ZXIoZGlzcD09TWluX0RJU1ApICU+JQ0KICBzZWxlY3QoZGlzcCxnZWFyLGhwKQ0KYGBgDQoNCiMjIyBJbnNpZ2h0OiBUb3lvdGEgQ29yb2xsYSBoYXMgdGhlIG1pbmltdW0gZGlzcGxhY2VtZW50IDcxLjENCg0KIyMgNy4gR2V0IHN1bW1hcnkgb2YgdGhlIGRhdGENCmBgYHtyfQ0Kc3VtbWFyeShtdGNhcnMpDQpgYGANCg0KIyMgOC4gT3V0IG9mIGFsbCB0aGUgY2FycyB3aXRoIDQgY3lsIHdoaWNoIGNhciBoYXMgbWF4IGRpc3BsIGFuZCBtaW4gaHA/DQoNCiMjIyBjYXJzIHdpdGggNCBjeWwNCmBgYHtyfQ0KY3lsXzRfY2FyIDwtIGZpbHRlcihtdGNhcnMsY3lsPT00KQ0KY3lsXzRfY2FyICU+JSBzZWxlY3QoY3lsLGRpc3AsaHApDQpgYGANCg0KIyMjIGNhcnMgaGF2aW5nIG1heGltdW0gZGlzcCB3aXRoIDQgY3lsDQpgYGB7cn0NCmN5bF80X2NhciAlPiUgZmlsdGVyKGRpc3A9PW1heChjeWxfNF9jYXIkZGlzcCkpICU+JQ0KICBzZWxlY3QoY3lsLGRpc3AsaHApDQpgYGANCg0KIyMjIEluc2lnaHQ6IE1lcmMgMjQwRCB3aGljaCBoYXMgNCBjeWxpbmRlciBoYXZpbmcgdGhlIG1heGltdW0gICBkaXNwbGFjZW1lbnQgMTQ2LjcgDQoNCiMjIyBjYXJzIGhhdmluZyBtaW4gSFAgd2l0aCA0IGN5bA0KYGBge3J9DQpjeWxfNF9jYXIgJT4lIGZpbHRlcihocD09bWluKGN5bF80X2NhciRocCkpICU+JQ0KICBzZWxlY3QoY3lsLGRpc3AsaHApDQpgYGANCg0KIyMjIEluc2lnaHQ6IEhvbmRhIENpdmljIHdoaWNoIGhhcyA0IGN5bGluZGVyIGhhdmluZyBtaW5pbXVtIEhQIDUyDQoNCiMjIDkuIE91dCBvZiBhbGwgdGhlIGNhcnMgd2l0aCA0IGdlYXIgYW5kID49NCBjeWwgd2hpY2ggY2FyIGhhcyBtYXggZGlzcGwgYW5kIG1pbiBocD8NCg0KIyMjIGNhcnMgd2l0aCA0IGdlYXIgYW5kIGN5bD49NA0KYGBge3J9DQpncl9jbF80X2NhciA8LSBmaWx0ZXIobXRjYXJzLGdlYXI9PTQsY3lsPj00KSANCmdyX2NsXzRfY2FyICU+JSBzZWxlY3QoZ2VhcixjeWwsaHAsZGlzcCkNCmBgYA0KDQoNCiMjIyBDYXJzIGhhdmluZyBtYXhpbXVtIGRpc3Agd2l0aCA0IGdlYXIgYW5kIGN5bD49NA0KYGBge3J9DQpncl9jbF80X2NhciAlPiUgZmlsdGVyKGRpc3A9PW1heChncl9jbF80X2NhciRkaXNwKSkgJT4lDQogIHNlbGVjdChnZWFyLGN5bCxocCxkaXNwKQ0KYGBgDQoNCiMjIyBJbnNpZ2h0OiBNZXJjIDI4MCBhbmQgTWVyYyAyODBDIHdoaWNoIGhhdmUgNiBjeWwgYW5kIDQgZ2VhciBoYXZpbmcgbWF4aW11bSBkaXNwIDE2Ny42DQoNCiMjIyBjYXJzIGhhdmluZyBtaW5pbXVtIEhQIHdpdGggNCBnZWFyIGFuZCBjeWw+PTQNCmBgYHtyfQ0KZ3JfY2xfNF9jYXIgJT4lIGZpbHRlcihocD09bWluKGdyX2NsXzRfY2FyJGhwKSkgJT4lDQogIHNlbGVjdChnZWFyLGN5bCxocCxkaXNwKQ0KYGBgDQoNCiMjIyBJbnNpZ2h0OiBIb25kYSBDaXZpYyB3aGljaCBoYXZlIDQgY3lsIGFuZCA0IGdlYXIgaGF2aW5nIG1pbmltdW0gSFAgNTINCg0K