Exercise VR.C10

In the vector space C3, compute the vector representation pb(v) for the basis B and vector v below. \[\begin{equation*}B = { \mathbf{} \left[ \begin{matrix} 2 \\ -2\\ 2\\ \end{matrix} \right] , \left[ \begin{matrix} 1\\ 3\\ 1\\ \end{matrix} \right] ,\left[ \begin{matrix} 3\\ 5\\ 2\\ \end{matrix} \right] } v = \left[ \begin{matrix} 11\\ 5\\ 8\\ \end{matrix} \right] \end{equation*}\]

A = matrix(c(2,1,3,11,-2,3,5,5,2,1,2,8),nrow=3,byrow=TRUE)

rref(A)
##      [,1] [,2] [,3] [,4]
## [1,]    1    0    0    2
## [2,]    0    1    0   -2
## [3,]    0    0    1    3

This means the following: \[\begin{equation*} \mathbf{} \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{matrix} \right] \left[ \begin{matrix} a1\\ a2\\ a3\\ \end{matrix} \right] = \left[ \begin{matrix} 2\\ -2\\ 3\\ \end{matrix} \right] \end{equation*}\]

From this we can see:

\[\begin{equation*} \mathbf{} \left[ \begin{matrix} a1\\ a2\\ a3\\ \end{matrix} \right] = \left[ \begin{matrix} 2\\ -2\\ 3\\ \end{matrix} \right] \end{equation*}\]

If we plug it back in we can verify they are equal

\[\begin{equation*} \mathbf{}2* \left[ \begin{matrix} 2\\ -2\\ 2\\ \end{matrix} \right] -2* \left[ \begin{matrix} 1\\ 3\\ 1\\ \end{matrix} \right] +3* \left[ \begin{matrix} 3\\ 5\\ 2\\ \end{matrix} \right] = \left[ \begin{matrix} 11\\ 5\\ 8\\ \end{matrix} \right] \end{equation*}\]