Univercidad Nacional del Altiplano
series de
estadistica e informatica
ejercicio john hanke capitulo 9 pagina 393
promedios de cierre diario del indice de Trasnportacion
s <- read.csv("D://nube/unap/8/series de tiempo/promediostabla9.csv")
head(s)
## transportes
## 1 222.34
## 2 222.24
## 3 221.17
## 4 218.88
## 5 220.05
## 6 219.61
s.ts <- ts(s)
class(s.ts)
## [1] "ts"
head(s.ts)
## transportes
## [1,] 222.34
## [2,] 222.24
## [3,] 221.17
## [4,] 218.88
## [5,] 220.05
## [6,] 219.61
graficando serie de tiemp
plot(s.ts, sub= "Grafica" , main="Promedio de cierre diario del indice de Transportacion",
cex.main=0.8,col="red" ,xlab="Tiempo",ylab="ïndice Promedio")
plot(s.ts,type="o", sub="Grafica" , main="Promedio de cierre diario del indice de Transportacion",
cex.main=0.8,col="red" ,xlab="Tiempo",ylab="ïndice Promedio",bg="seagreen")
AFC y PAFC
acf(s.ts, main="Promedio de cierre diario del indice de Transportacion",cex.main=0.8,col="red" ,ylab="Autocrrelacion")
acf(s.ts, plot=FALSE)$acf
## , , 1
##
## [,1]
## [1,] 1.0000000
## [2,] 0.9423472
## [3,] 0.8831387
## [4,] 0.8204419
## [5,] 0.7582471
## [6,] 0.6980549
## [7,] 0.6401488
## [8,] 0.5806164
## [9,] 0.5186525
## [10,] 0.4641670
## [11,] 0.4143524
## [12,] 0.3672203
## [13,] 0.3246434
## [14,] 0.2833773
## [15,] 0.2487379
## [16,] 0.2178359
## [17,] 0.1950445
## [18,] 0.1720530
## [19,] 0.1499563
pacf(s.ts) #funcion de autocorrelacion partica
Primera diferencia
primerad <- diff(s.ts,differences = 1)
primerad #head(primerad,64) #65-1 manualmente
## Time Series:
## Start = 2
## End = 65
## Frequency = 1
## transportes
## [1,] -0.10
## [2,] -1.07
## [3,] -2.29
## [4,] 1.17
## [5,] -0.44
## [6,] -3.21
## [7,] 0.93
## [8,] 2.36
## [9,] -0.37
## [10,] -1.07
## [11,] 2.05
## [12,] 2.24
## [13,] 1.02
## [14,] -0.49
## [15,] 2.29
## [16,] 2.24
## [17,] -0.78
## [18,] 2.87
## [19,] -0.39
## [20,] -0.34
## [21,] 1.03
## [22,] 3.06
## [23,] 1.95
## [24,] 1.17
## [25,] 2.14
## [26,] 2.83
## [27,] 0.34
## [28,] 5.26
## [29,] 1.99
## [30,] 0.10
## [31,] -0.05
## [32,] 0.83
## [33,] 0.29
## [34,] -3.45
## [35,] 1.12
## [36,] 0.19
## [37,] 0.05
## [38,] 2.87
## [39,] 1.12
## [40,] -0.73
## [41,] -3.02
## [42,] 1.71
## [43,] 1.90
## [44,] 1.75
## [45,] -1.37
## [46,] -3.26
## [47,] -1.02
## [48,] 1.51
## [49,] -1.32
## [50,] 3.46
## [51,] 3.26
## [52,] 3.95
## [53,] 0.63
## [54,] 2.24
## [55,] 3.46
## [56,] 3.26
## [57,] 3.95
## [58,] 0.63
## [59,] 2.24
## [60,] 3.46
## [61,] 3.26
## [62,] 3.95
## [63,] 0.63
## [64,] 2.24
# grafico con la primera diferencia
acf(primerad)
mostrando los datos de acf de primera diferencia
acf(primerad,16, plot=FALSE)$acf# datos
## , , 1
##
## [,1]
## [1,] 1.000000000
## [2,] 0.281179397
## [3,] 0.079765077
## [4,] 0.189123868
## [5,] 0.241929771
## [6,] 0.111908077
## [7,] 0.014343376
## [8,] 0.176703382
## [9,] -0.044213410
## [10,] -0.133395480
## [11,] 0.044898473
## [12,] -0.070064197
## [13,] -0.019387016
## [14,] -0.028492558
## [15,] 0.001757683
## [16,] -0.124115169
## [17,] -0.186528578
pacf(diff(s.ts,1))
-----------
#as <- diff(s.ts)
#head(as,64)
acf(s.ts, plot=FALSE)$acf
## , , 1
##
## [,1]
## [1,] -1.0000000
## [2,] -0.9423472
## [3,] -0.8831387
## [4,] -0.8204419
## [5,] -0.7582471
## [6,] -0.6980549
## [7,] -0.6401488
## [8,] -0.5806164
## [9,] -0.5186525
## [10,] -0.4641670
## [11,] -0.4143524
## [12,] -0.3672203
## [13,] -0.3246434
## [14,] -0.2833773
## [15,] -0.2487379
## [16,] -0.2178359
## [17,] -0.1950445
## [18,] -0.1720530
## [19,] -0.1499563
mc <-arima(s.ts,c(1,1,0))
mc
##
## Call:
## arima(x = s.ts, order = c(1, 1, 0))
##
## Coefficients:
## ar1
## 0.4383
## s.e. 0.1117
##
## sigma^2 estimated as 3.861: log likelihood = -134.15, aic = 272.29
coef(mc)
## ar1
## 0.4383256
ms <-arima(s.ts,c(0,1,1))
ms
##
## Call:
## arima(x = s.ts, order = c(0, 1, 1))
##
## Coefficients:
## ma1
## 0.3832
## s.e. 0.1082
##
## sigma^2 estimated as 4.031: log likelihood = -135.5, aic = 275
coef(ms)
## ma1
## 0.3831591
summary(s.ts)
## transportes
## Min. :216.4
## 1st Qu.:226.8
## Median :247.8
## Mean :244.2
## 3rd Qu.:251.8
## Max. :288.6