Compute the matrix representation of \(T\) relative to the bases \(B\) and \(C\).
\[T:P_3\rightarrow \mathbb{C} ^3,\quad T(a+bx+cx^2+dx^3)= \begin{bmatrix} 2a & -3b & +4c & -2d \\ 1a & 1b & -1c & 1d \\ 3a & 0b & 2c & -3d \end{bmatrix}\] \[B = \{1,x,x^2,x^3\}\quad C= \left\{ \begin {bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin {bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin {bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]
C is upper triangle, so it is easy to solve the systems of equations to find each column in the matrix representation
Col 1
\[\begin
{bmatrix}
2 \\
1 \\
3
\end{bmatrix}
=
\left\{
X_1 \centerdot
\begin
{bmatrix}
1 \\
0 \\
0
\end{bmatrix},
X_2 \centerdot
\begin
{bmatrix}
1 \\
1 \\
0
\end{bmatrix},
X_3 \centerdot
\begin
{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\right\}
\] working from the bottom up:
this gives the vector: \[\begin {bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}\]
Col 2 \[\begin
{bmatrix}
-3 \\
1 \\
0
\end{bmatrix}
=
\left\{
X_1 \centerdot
\begin
{bmatrix}
1 \\
0 \\
0
\end{bmatrix},
X_2 \centerdot
\begin
{bmatrix}
1 \\
1 \\
0
\end{bmatrix},
X_3 \centerdot
\begin
{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\right\}
\]
working from the bottom up:
this gives the vector: \[\begin {bmatrix} -4 \\ 1 \\ 0 \end{bmatrix}\]
Col 3 \[\begin {bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} = \left\{ X_1 \centerdot \begin {bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, X_2 \centerdot \begin {bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, X_3 \centerdot \begin {bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]
working from the bottom up:
this gives the vector: \[\begin {bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}\]
Col 4 \[\begin {bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} = \left\{ X_1 \centerdot \begin {bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, X_2 \centerdot \begin {bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, X_3 \centerdot \begin {bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]
working from the bottom up:
this gives the vector: \[\begin {bmatrix} -3 \\ 4 \\ -3 \end{bmatrix}\]
Together, these 4 vectors build the new matrix representation:
\[M_{B,C}^{T} = \begin {bmatrix} 1 & -4 & 5 & -3 \\ -2 & 1 & -3 & 4 \\ 3 & 0 & 2 & -3 \end{bmatrix} \]