The Pandas package has built-in capabilities for data visualization. It’s built-off of matplotlib.
A B C D
2000-01-01 1.339091 -0.163643 -0.646443 1.041233
2000-01-02 -0.774984 0.137034 -0.882716 -2.253382
2000-01-03 -0.921037 -0.482943 -0.417100 0.478638
2000-01-04 -1.738808 -0.072973 0.056517 0.015085
2000-01-05 -0.905980 1.778576 0.381918 0.291436
a b c d
0 0.039762 0.218517 0.103423 0.957904
1 0.937288 0.041567 0.899125 0.977680
2 0.780504 0.008948 0.557808 0.797510
3 0.672717 0.247870 0.264071 0.444358
4 0.053829 0.520124 0.552264 0.190008
There are several plot types built-in to pandas, most of them statistical plots by nature:
You can also just call df.plot(kind='hist') or replace that kind argument with any of the key terms shown in the list above (e.g. ‘box’,‘barh’, etc..)
There are a few different ways to call the plots.
You can use c to color based off another column value Use cmap to indicate colormap to use. For all the colormaps, check out: http://matplotlib.org/users/colormaps.html
Or use s to indicate size based off another column. s parameter needs to be an array, not just the name of a column: