\[ \frac{dy}{dt} = f(t,y), \,\, y(t_0) = y_0 \]
\[ \begin{align} y - y_0 & = m(x - x_0) \\ y &= y_0 + m(x - x_0) \\ &= y_0 + mh \end{align} \]
\[ \begin{align} a &= hm \,\,\, \mathrm{(rise)}\\ y_{k+1} & = y_k + a \,\,\, \mathrm{(vertical)}\\ t_{k+1} &= t_k + h \,\,\, \mathrm{(horizontal)} \end{align} \]
\[ \begin{align} \frac{dy}{dt} & = f(t,y), \,\, y(t_0) = y_0 \\ a &= hf(t_k,y_k) \\ y_{k+1} & = y_k + a \\ t_{k+1} &= t_k + h \end{align} \]
\[ \begin{align} \frac{dy}{dt} & = f(t,y), \,\, y(t_0) = y_0 \\ a &= hf(t_k,y_k) \\ b &= hf\left(t_k + 0.5h, y_k + 0.5a \right) \\ c &= hf\left(t_k + 0.5h, y_k + 0.5b \right) \\ d &= hf\left(t_k + h, y_k + c \right) \\ y_{k+1} & = y_k + \frac{1}{6} (a + 2b + 2c + d) \\ t_{k+1} &= t_k + h \end{align} \]
\[ \begin{align} \frac{dy}{dt} & = f(y), \,\, y(t_0) = y_0 \\ a &= hf(y_k) \\ b &= hf\left(y_k + 0.5a \right) \\ c &= hf\left(y_k + 0.5b \right) \\ d &= hf\left(y_k + c \right) \\ y_{k+1} & = y_k + \frac{1}{6} (a + 2b + 2c + d) \\ t_{k+1} &= t_k + h \end{align} \]