Load in Dataset
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.0
## ✓ tidyr 1.1.0 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Show the data
Look at the structure of data
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
Calculating Summary Statistics
mean(airquality$Temp)
## [1] 77.88235
mean(airquality[,4])
## [1] 77.88235
Change the Months from 5-9 to May through September
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
Look at the summary statistics of the dataset, and see how Month has changed to have characters instead of numbers.
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : chr "May" "May" "May" "May" ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
summary(airquality)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Length:153 Min. : 1.0
## Class :character 1st Qu.: 8.0
## Mode :character Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
##
Month is a categorical variable with different levels, called factors.
Reorder the Months so they do not default to alphabetical
airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
Plot 1: Create a histogram categorized by Month with qplot
p1 <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
p1

Plot 2: Make a histogram using ggplot
Reorder legend so that it is not the default (alphabetical), but rather in order that months come
outline the bars in while using the color=“white” command
p2 <- airquality %>%
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p2

Plot 3: Create side-by-side boxplots categorized by Month.
fill=Month command fills each boxplot with a different color in the aesthetics
scale_fill_discrete makes the legend on the side for discrete color values.
p3 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Months") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3

Plot 4: Make the same side-by-side boxplots, but in grey-scale
p4 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Temperatures") +
ylab("Frequency") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4

Plot 5: Now make one plot on your own of any of the variables in this dataset. It may be a scatterplot, histogram, or boxplot.
Ozone by month using boxplot
p5 <- airquality %>%
ggplot(aes(Month, Ozone, fill = Month)) +
ggtitle("Ozone") +
xlab("Months") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))+
scale_fill_hue(l=35, c=40)
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
p5
## Warning: Removed 37 rows containing non-finite values (stat_boxplot).
