Summary

     ...2            Documento             ...8            Expediente       
 Length:23242       Length:23242       Length:23242       Length:23242      
 Class :character   Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character  
     ...6              ...11              ...12          
 Length:23242       Length:23242       Length:23242      
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
tibble [23,242 x 7] (S3: tbl_df/tbl/data.frame)
 $ ...2      : chr [1:23242] "Ingreso" "05/10/2017 15:42" "06/10/2017 09:21" "10/10/2017 11:59" ...
 $ Documento : chr [1:23242] "Tipo" "Resolución Afecta" "Resolución Afecta" "Resolución Afecta" ...
 $ ...8      : chr [1:23242] "Nº Folio" "8/2017" "9/2017" "10/2017" ...
 $ Expediente: chr [1:23242] "N" "E11414/2017" "E12120/2017" "E12693/2017" ...
 $ ...6      : chr [1:23242] "Remitente" "DRA JEANETTE VEGA" "DRA JEANETTE VEGA" "DRA JEANETTE VEGA" ...
 $ ...11     : chr [1:23242] "De" "JORGE AGUILERA - PROFESIONAL DE APOYO - 2.1F - SECCION GEST. PRESUPUESTARIA" "JORGE TRONCOSO - PROFESIONAL DE APOYO - 4.2A - SUBDPTO. DE ASESORIA JURIDICO ADMINISTRATIVA" "ISABEL PARADA - JEFE(A) - 4.1A - SUBDPTO. DE MARCO REGULATORIO" ...
 $ ...12     : chr [1:23242] "Materia" "APRUEBA MODIFICACIÓN A LA CLÁUSULA SEXTA DE LOS AC..." "RESUELVE SUMARIO ADMINISTRATIVO ORDENADO INSTRUIR ..." "DELEGACIÓN     DE   FACULTADES   EN MATERIAS AFECT..." ...

NC

OFICIOS

Data_Frame

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

Grafico



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

Exentas

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

Afectas

Data-Frame

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

Grafico



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

Resoluciones RRHH

Date_Frame

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

DZN

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

DZCN

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

DZCS

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

DZS

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)

columuma 1.1

columna 1.2

# A tibble: 23,242 x 7
   ...2    Documento   ...8   Expediente ...6    ...11             ...12        
   <chr>   <chr>       <chr>  <chr>      <chr>   <chr>             <chr>        
 1 Ingreso Tipo        Nº Fo~ N          Remite~ De                Materia      
 2 05/10/~ Resolución~ 8/2017 E11414/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 3 06/10/~ Resolución~ 9/2017 E12120/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 4 10/10/~ Resolución~ 10/20~ E12693/20~ DRA JE~ ISABEL PARADA - ~ DELEGACIÓN  ~
 5 10/10/~ Resolución~ 11/20~ E13070/20~ DRA JE~ JORGE TRONCOSO -~ RESUELVE SUM~
 6 10/10/~ Resolución~ 12/20~ E11896/20~ DRA JE~ MANUEL LARENAS -~ APRUEBA MODI~
 7 10/10/~ Resolución~ 13/20~ E12679/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
 8 11/10/~ Resolución~ 14/20~ E12711/20~ DRA JE~ CARLA BORRONI - ~ APRUEBA CONT~
 9 20/10/~ Resolución~ 18/20~ E13792/20~ DRA JE~ MARCELA PAZ PRIE~ AUTORIZA TRA~
10 26/10/~ Resolución~ 19/20~ E20647/20~ DRA JE~ JORGE AGUILERA -~ APRUEBA MODI~
# ... with 23,232 more rows

columna 1.3



    demo(graphics)
    ---- ~~~~~~~~

> #  Copyright (C) 1997-2009 The R Core Team
> 
> require(datasets)

> require(grDevices); require(graphics)

> ## Here is some code which illustrates some of the differences between
> ## R and S graphics capabilities.  Note that colors are generally specified
> ## by a character string name (taken from the X11 rgb.txt file) and that line
> ## textures are given similarly.  The parameter "bg" sets the background
> ## parameter for the plot and there is also an "fg" parameter which sets
> ## the foreground color.
> 
> 
> x <- stats::rnorm(50)

> opar <- par(bg = "white")

> plot(x, ann = FALSE, type = "n")


> abline(h = 0, col = gray(.90))

> lines(x, col = "green4", lty = "dotted")

> points(x, bg = "limegreen", pch = 21)

> title(main = "Simple Use of Color In a Plot",
+       xlab = "Just a Whisper of a Label",
+       col.main = "blue", col.lab = gray(.8),
+       cex.main = 1.2, cex.lab = 1.0, font.main = 4, font.lab = 3)

> ## A little color wheel.   This code just plots equally spaced hues in
> ## a pie chart.   If you have a cheap SVGA monitor (like me) you will
> ## probably find that numerically equispaced does not mean visually
> ## equispaced.  On my display at home, these colors tend to cluster at
> ## the RGB primaries.  On the other hand on the SGI Indy at work the
> ## effect is near perfect.
> 
> par(bg = "gray")

> pie(rep(1,24), col = rainbow(24), radius = 0.9)


> title(main = "A Sample Color Wheel", cex.main = 1.4, font.main = 3)

> title(xlab = "(Use this as a test of monitor linearity)",
+       cex.lab = 0.8, font.lab = 3)

> ## We have already confessed to having these.  This is just showing off X11
> ## color names (and the example (from the postscript manual) is pretty "cute".
> 
> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry",
+             "Apple", "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales,
+     col = c("purple","violetred1","green3","cornsilk","cyan","white"))


> title(main = "January Pie Sales", cex.main = 1.8, font.main = 1)

> title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3)

> ## Boxplots:  I couldn't resist the capability for filling the "box".
> ## The use of color seems like a useful addition, it focuses attention
> ## on the central bulk of the data.
> 
> par(bg="cornsilk")

> n <- 10

> g <- gl(n, 100, n*100)

> x <- rnorm(n*100) + sqrt(as.numeric(g))

> boxplot(split(x,g), col="lavender", notch=TRUE)


> title(main="Notched Boxplots", xlab="Group", font.main=4, font.lab=1)

> ## An example showing how to fill between curves.
> 
> par(bg="white")

> n <- 100

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")


> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

> ## Colored plot margins, axis labels and titles.   You do need to be
> ## careful with these kinds of effects.   It's easy to go completely
> ## over the top and you can end up with your lunch all over the keyboard.
> ## On the other hand, my market research clients love it.
> 
> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48, 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)

> par(bg="lightgray")

> plot(x, type="n", axes=FALSE, ann=FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="cornsilk", border="black")

> lines(x, col="blue")

> points(x, pch=21, bg="lightcyan", cex=1.25)

> axis(2, col.axis="blue", las=1)

> axis(1, at=1:12, lab=month.abb, col.axis="blue")

> box()

> title(main= "The Level of Interest in R", font.main=4, col.main="red")

> title(xlab= "1996", col.lab="red")

> ## A filled histogram, showing how to change the font used for the
> ## main title without changing the other annotation.
> 
> par(bg="cornsilk")

> x <- rnorm(1000)

> hist(x, xlim=range(-4, 4, x), col="lavender", main="")


> title(main="1000 Normal Random Variates", font.main=3)

> ## A scatterplot matrix
> ## The good old Iris data (yet again)
> 
> pairs(iris[1:4], main="Edgar Anderson's Iris Data", font.main=4, pch=19)


> pairs(iris[1:4], main="Edgar Anderson's Iris Data", pch=21,
+       bg = c("red", "green3", "blue")[unclass(iris$Species)])


> ## Contour plotting
> ## This produces a topographic map of one of Auckland's many volcanic "peaks".
> 
> x <- 10*1:nrow(volcano)

> y <- 10*1:ncol(volcano)

> lev <- pretty(range(volcano), 10)

> par(bg = "lightcyan")

> pin <- par("pin")

> xdelta <- diff(range(x))

> ydelta <- diff(range(y))

> xscale <- pin[1]/xdelta

> yscale <- pin[2]/ydelta

> scale <- min(xscale, yscale)

> xadd <- 0.5*(pin[1]/scale - xdelta)

> yadd <- 0.5*(pin[2]/scale - ydelta)

> plot(numeric(0), numeric(0),
+      xlim = range(x)+c(-1,1)*xadd, ylim = range(y)+c(-1,1)*yadd,
+      type = "n", ann = FALSE)


> usr <- par("usr")

> rect(usr[1], usr[3], usr[2], usr[4], col="green3")

> contour(x, y, volcano, levels = lev, col="yellow", lty="solid", add=TRUE)

> box()

> title("A Topographic Map of Maunga Whau", font= 4)

> title(xlab = "Meters North", ylab = "Meters West", font= 3)

> mtext("10 Meter Contour Spacing", side=3, line=0.35, outer=FALSE,
+       at = mean(par("usr")[1:2]), cex=0.7, font=3)

> ## Conditioning plots
> 
> par(bg="cornsilk")

> coplot(lat ~ long | depth, data = quakes, pch = 21, bg = "green3")


> par(opar)