## ── Attaching packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────── fpp3 0.3 ──
## ✓ tibble 3.0.3 ✓ tsibble 0.9.2
## ✓ dplyr 1.0.2 ✓ tsibbledata 0.2.0
## ✓ tidyr 1.1.2 ✓ feasts 0.1.5
## ✓ lubridate 1.7.9 ✓ fable 0.2.1
## ✓ ggplot2 3.3.2
## ── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── fpp3_conflicts ──
## x lubridate::date() masks base::date()
## x dplyr::filter() masks stats::filter()
## x tsibble::interval() masks lubridate::interval()
## x dplyr::lag() masks stats::lag()
## Loading required package: forecast
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: fma
## Loading required package: expsmooth
autoplot(usnetelec)
lambda <- BoxCox.lambda(usnetelec)
lambda #0.5167714
## [1] 0.5167714
autoplot(BoxCox(usnetelec,lambda))
autoplot(usgdp)
lambda <- BoxCox.lambda(usgdp)
lambda #0.366352
## [1] 0.366352
autoplot(BoxCox(usgdp,lambda))
autoplot(mcopper)
lambda <- BoxCox.lambda(mcopper)
lambda #0.1919047
## [1] 0.1919047
autoplot(BoxCox(mcopper,lambda))
autoplot(enplanements)
lambda <- BoxCox.lambda(enplanements)
lambda # -0.2269461
## [1] -0.2269461
autoplot(BoxCox(enplanements,lambda))
autoplot(cangas)
lambda <- BoxCox.lambda(cangas)
lambda # 0.5767759
## [1] 0.5767759
autoplot(BoxCox(cangas,lambda))
myts <- ts(retaildata[,"A3349413L"],
frequency=12, start=c(1982,4))
autoplot(myts)
lambda <- BoxCox.lambda(myts)
lambda # 0.1606171
## [1] 0.1606171
autoplot(BoxCox(myts,lambda))
myts.train <- window(myts, end=c(2010,12))
myts.test <- window(myts, start=2011)
autoplot(myts) + autolayer(myts.train, series=“Training”) + #autolayer(myts.test, series=“Test”)
fc <- snaive(myts.train)
accuracy(fc,myts.test)
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6.702703 18.68344 14.29249 4.111808 10.115102 1.000000 0.7640962
## Test set -6.304167 24.55469 18.66250 -2.918671 7.691228 1.305755 0.6891488
## Theil's U
## Training set NA
## Test set 1.019696
checkresiduals(fc)
##
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 749.15, df = 24, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 24
myts2<- window(myts, start= 2000, end=c(2010, 12)) mytsfc1 <- meanf(myts2, h = 40) mytsfc2 <- rwf(myts2, h=40) mytsfc3 <- rwf(myts2, drift =TRUE, h=40)
autoplot(subset(myts, end=c(2010, 12))) + autolayer(mytsfc1, PI=FALSE, series = “Mean”)+ autolayer(mytsfc2, PI=FALSE, series = “Naïve”)+ autolayer(mytsfc3, PI=FALSE, series = “Drift”)+ guides(colors=guide_legend(title = “Forecasts”))