What is the rank of the matrix A?
\[A = \begin{bmatrix} 1 & 2 & 3 & 4\\ -1 & 0 & 1 & 3\\ 0 & 1 & -2 & 1\\ 5 & 4 & -2 & -3 \end{bmatrix}\]
A <- matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-1), nrow = 4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -1
Arank <- qr(A)$rank
sprintf('The rank of the above matrix is %s', Arank)
## [1] "The rank of the above matrix is 4"
Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?
#For a given matrix mxn, where m > n, the maximum rank is n and the minumum rank is 1.
What is the rank of matrix B?
\[B = \begin{bmatrix} 1 & 2 & 1\\ 3 & 6 & 3\\ 2 & 4 & 2 \end{bmatrix}\]
B <- matrix(c(1,3,2,2,6,4,1,3,2), nrow = 3)
Brank <- qr(B)$rank
sprintf('The rank for the above matrix is %s', Brank)
## [1] "The rank for the above matrix is 1"
Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.
\[A = \begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6 \end{bmatrix}\]
\[det (\lambda I~n~ - A) = 0\] \[\begin{bmatrix} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda\\ \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} \lambda - 1 & -2 & -3\\ 0 & \lambda - 4 & -5\\ 0 & 0 & \lambda - 6 \end{bmatrix}\]
\[\begin{bmatrix} \lambda - 1 & -2 & -3\\ 0 & \lambda - 4 & -5\\ 0 & 0 & \lambda - 6 \end{bmatrix} \]
\[(\lambda - 1)((\lambda - 4)(\lambda -6)) - -2(0*0) + -3(0*0) \]
\[(\lambda - 1)(\lambda^2 - 10 \lambda + 24) \]
\[\lambda^3 - 10 \lambda ^2 + 24 \lambda -\lambda^2 + 10 \lambda - 24 \]
\[ p(\lambda) = \lambda^3 - 11 \lambda ^2 + 34 \lambda - 24 = 0 \]
We look at this line \[(\lambda - 1)(\lambda^2 - 10 \lambda + 24) \]
We see that \(\lambda\) = 1
When we factor \((\lambda^2 - 10 \lambda + 24)\), we get \((\lambda - 6)(\lambda - 4)\). Here, we see that also equals 6 and 4.
The eigen values are 1, 4, and 6.
A = matrix(c(1,0,0,2,4,0,3,5,6), nrow = 3)
x <- eigen(A)
#Using the eigen function we can get the eigen vectors of matrix A.
x$vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0