R Markdown
key_crop_yields <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-01/key_crop_yields.csv') %>%
janitor::clean_names()
## Parsed with column specification:
## cols(
## Entity = col_character(),
## Code = col_character(),
## Year = col_double(),
## `Wheat (tonnes per hectare)` = col_double(),
## `Rice (tonnes per hectare)` = col_double(),
## `Maize (tonnes per hectare)` = col_double(),
## `Soybeans (tonnes per hectare)` = col_double(),
## `Potatoes (tonnes per hectare)` = col_double(),
## `Beans (tonnes per hectare)` = col_double(),
## `Peas (tonnes per hectare)` = col_double(),
## `Cassava (tonnes per hectare)` = col_double(),
## `Barley (tonnes per hectare)` = col_double(),
## `Cocoa beans (tonnes per hectare)` = col_double(),
## `Bananas (tonnes per hectare)` = col_double()
## )
## Warning in FUN(X[[i]], ...): strings not representable in native encoding will
## be translated to UTF-8
## Warning in FUN(X[[i]], ...): unable to translate '<U+00C4>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00D6>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00E4>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00F6>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00DF>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00C6>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00E6>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00D8>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00F8>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00C5>' to native encoding
## Warning in FUN(X[[i]], ...): unable to translate '<U+00E5>' to native encoding
dplyr::glimpse(key_crop_yields)
## Rows: 13,075
## Columns: 14
## $ entity <chr> "Afghanistan", "Afghanistan", "Afgha...
## $ code <chr> "AFG", "AFG", "AFG", "AFG", "AFG", "...
## $ year <dbl> 1961, 1962, 1963, 1964, 1965, 1966, ...
## $ wheat_tonnes_per_hectare <dbl> 1.0220, 0.9735, 0.8317, 0.9510, 0.97...
## $ rice_tonnes_per_hectare <dbl> 1.5190, 1.5190, 1.5190, 1.7273, 1.72...
## $ maize_tonnes_per_hectare <dbl> 1.4000, 1.4000, 1.4260, 1.4257, 1.44...
## $ soybeans_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ potatoes_tonnes_per_hectare <dbl> 8.6667, 7.6667, 8.1333, 8.6000, 8.80...
## $ beans_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ peas_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ cassava_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ barley_tonnes_per_hectare <dbl> 1.0800, 1.0800, 1.0800, 1.0857, 1.08...
## $ cocoa_beans_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
## $ bananas_tonnes_per_hectare <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
map_df <- map_data("world")
dplyr::glimpse(map_df)
## Rows: 99,338
## Columns: 6
## $ long <dbl> -69.89912, -69.89571, -69.94219, -70.00415, -70.06612, -7...
## $ lat <dbl> 12.45200, 12.42300, 12.43853, 12.50049, 12.54697, 12.5970...
## $ group <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
## $ order <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18...
## $ region <chr> "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "Ar...
## $ subregion <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
ggplot(map_df, aes(long, lat, group = group)) +
geom_polygon(color = "white") +
coord_equal() +
theme_void()
