\[ \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, heat \, content} \end{Bmatrix} = c \times \begin{Bmatrix} mass \end{Bmatrix} \times \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, temperature} \end{Bmatrix} \]
\[ \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, heat \, content} \end{Bmatrix} = c \times \begin{Bmatrix} mass \end{Bmatrix} \times \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, temperature} \end{Bmatrix} \]
becomes
\[ Q = cm \frac{dU}{dt} \]
\[ Q = cm \frac{dU}{dt} \]
\[ Q = cm \frac{dU}{dt} \]
\[ \begin{Bmatrix} \mathrm{rate \, of \, heat} \\ \mathrm{exchanged \, with } \\ \mathrm{surroundings } \\ \end{Bmatrix} = \pm h S \Delta U \]
\[ \begin{Bmatrix} \mathrm{rate \, of \, change} \\ \mathrm{of \, heat \, content} \end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, heat \, lost} \\ \mathrm{to \, surroundings} \end{Bmatrix} \]
\[ Q = cm \frac{dU}{dt} = - h S \Delta U \]
\[ \frac{dU}{dt} = - \frac{h S}{cm} (U - u_s) \]
\[ \frac{dU}{dt} = - \frac{h S}{cm} (U - u_s) \]
\[ \frac{dU}{dt} = - \frac{h S}{cm} (U - u_s) \]
\[ \frac{dU}{dt} = - \frac{h S}{cm} (U - u_s) \]