CATEGORY ALIGNMENT (WITHIN CONDITION COMPARISONS)

In sorting, how similar are people’s sorts within conditions, and how does this vary across conditions?

in-lab

With labels people have significantly more similar sorts than do Baseline or No labels people. Baseline and No labels people do not significantly differ in alignment.

in-lab plot

in-lab models

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_inlab
## 
## REML criterion at convergence: -231.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5503 -0.5982  0.0240  0.5932  3.4683 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.11184  0.3344  
##  subj_code_2 (Intercept) 0.10207  0.3195  
##  Residual                0.03746  0.1935  
## Number of obs: 2713, groups:  subj_code_1, 126; subj_code_2, 126
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   -2.30669    0.07088  195.57535 -32.543  < 2e-16 ***
## condNL         0.11997    0.10132  194.89618   1.184    0.238    
## condWL         0.41741    0.10346  200.33342   4.035 7.78e-05 ***
## scale(base)    0.17929    0.01410 2477.13270  12.714  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condNL condWL
## condNL      -0.698              
## condWL      -0.690  0.480       
## scale(base)  0.053 -0.014 -0.126
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_NLWL
## 
## REML criterion at convergence: -309.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.1900 -0.5995  0.0267  0.5774  3.6821 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.12262  0.3502  
##  subj_code_2 (Intercept) 0.11302  0.3362  
##  Residual                0.03317  0.1821  
## Number of obs: 1723, groups:  subj_code_1, 82; subj_code_2, 82
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   -2.15807    0.07606  131.61459 -28.373   <2e-16 ***
## condWL         0.30606    0.10938  133.62399   2.798   0.0059 ** 
## scale(base)    0.18561    0.01653 1664.05209  11.227   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condWL
## condWL      -0.700       
## scale(base)  0.072 -0.116

online

No labels and With labels people do not significantly differ in alignment

online plot

online models

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online
## 
## REML criterion at convergence: -1229.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.5156 -0.6459 -0.0255  0.6030  3.4967 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.06369  0.2524  
##  subj_code_2 (Intercept) 0.06247  0.2499  
##  Residual                0.01637  0.1279  
## Number of obs: 1446, groups:  subj_code_1, 75; subj_code_2, 75
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  -1.475711   0.059991 106.059474  -24.60   <2e-16 ***
## condWL       -0.002472   0.083159 105.900246   -0.03    0.976    
## scale(base)   0.194524   0.016436 809.796893   11.84   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condWL
## condWL      -0.721       
## scale(base)  0.012 -0.007

online 2

With labels = greater alignment than NL (p=.016)

add in baseline

online 2 plot

online 2 models

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -400.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0511 -0.6421 -0.0024  0.6329  3.9326 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.05731  0.2394  
##  subj_code_2 (Intercept) 0.05351  0.2313  
##  Residual                0.03546  0.1883  
## Number of obs: 2305, groups:  subj_code_1, 116; subj_code_2, 116
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   -2.00524    0.05636  175.74949 -35.580   <2e-16 ***
## condNL        -0.05396    0.07765  175.06444  -0.695    0.488    
## condWL         0.06870    0.07969  178.76205   0.862    0.390    
## scale(base)    0.33204    0.01440 1172.83440  23.065   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condNL condWL
## condNL      -0.723              
## condWL      -0.711  0.508       
## scale(base)  0.040  0.034 -0.123
## refitting model(s) with ML (instead of REML)
## Data: data_full_online2
## Models:
## m0: I(log(is_match + 0.001)) ~ 1 + scale(base) + (1 | subj_code_1) + 
## m0:     (1 | subj_code_2)
## m1: I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) + 
## m1:     (1 | subj_code_2)
##    Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
## m0  5 -407.02 -378.31 208.51  -417.02                         
## m1  7 -405.49 -365.29 209.75  -419.49 2.4735      2     0.2903

Look at specific comparisons

BL v NL - not sig diff

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online2_BLNL
## 
## REML criterion at convergence: -97.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8572 -0.6585  0.0009  0.6253  3.7327 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.06687  0.2586  
##  subj_code_2 (Intercept) 0.05254  0.2292  
##  Residual                0.03986  0.1997  
## Number of obs: 1564, groups:  subj_code_1, 78; subj_code_2, 78
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  -2.09099    0.05854 124.79823 -35.719   <2e-16 ***
## condNL       -0.05154    0.08070 124.58436  -0.639    0.524    
## scale(base)   0.30794    0.01616 920.70288  19.060   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condNL
## condNL      -0.726       
## scale(base) -0.030  0.042

BL v WL - not sig diff

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online2_BLWL
## 
## REML criterion at convergence: -314.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2165 -0.6460 -0.0361  0.6184  4.0620 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.05044  0.2246  
##  subj_code_2 (Intercept) 0.04683  0.2164  
##  Residual                0.03391  0.1841  
## Number of obs: 1444, groups:  subj_code_1, 75; subj_code_2, 75
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  -1.92957    0.05325 125.76657  -36.24   <2e-16 ***
## condWL        0.04294    0.07528 127.49875    0.57    0.569    
## scale(base)   0.37224    0.01841 586.37716   20.23   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condWL
## condWL      -0.717       
## scale(base)  0.119 -0.165

NL v WL - WL sig higher alignment than NL

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online2_NLWL
## 
## REML criterion at convergence: -413.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4643 -0.6360  0.0241  0.6169  3.8334 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.06042  0.2458  
##  subj_code_2 (Intercept) 0.06431  0.2536  
##  Residual                0.03206  0.1791  
## Number of obs: 1602, groups:  subj_code_1, 79; subj_code_2, 79
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  -2.05552    0.05680 105.77675 -36.186   <2e-16 ***
## condWL        0.16981    0.08257 108.20192   2.057   0.0421 *  
## scale(base)   0.29075    0.01722 894.16901  16.887   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condWL
## condWL      -0.699       
## scale(base)  0.121 -0.170

ALIGNMENT CONTROLLING FOR SCREEN SIZE IN ONLINE 2

## Warning: NAs introduced by coercion

## Warning: NAs introduced by coercion
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + scale(subj_1_area):scale(subj_2_area) +  
##     (1 | subj_code_1) + (1 | subj_code_2)
##    Data: data_full_online2_2
## 
## REML criterion at convergence: -63.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2423 -0.6392 -0.0123  0.6103  3.6776 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.17089  0.4134  
##  subj_code_2 (Intercept) 0.15861  0.3983  
##  Residual                0.03711  0.1926  
## Number of obs: 2268, groups:  subj_code_1, 115; subj_code_2, 115
## 
## Fixed effects:
##                                         Estimate Std. Error         df t value
## (Intercept)                           -1.986e+00  5.414e-02  2.259e+02 -36.686
## scale(subj_1_area):scale(subj_2_area) -3.042e-03  5.612e-03  2.077e+03  -0.542
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## scale(subj_1_area):scale(subj_2_area)    0.588    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## s(_1_):(_2_ -0.027
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: align_by_screen ~ 1 + cond + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_full_online2_2
## 
## REML criterion at convergence: -1253.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3162 -0.6867 -0.0209  0.6372  4.0253 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.00000  0.0000  
##  subj_code_2 (Intercept) 0.00000  0.0000  
##  Residual                0.03325  0.1823  
## Number of obs: 2268, groups:  subj_code_1, 115; subj_code_2, 115
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  2.487e-03  7.092e-03  2.264e+03   0.351    0.726    
## condNL       2.543e-03  9.440e-03  2.264e+03   0.269    0.788    
## condWL      -1.057e-02  1.012e-02  2.264e+03  -1.044    0.296    
## scale(base)  1.800e-02  4.122e-03  2.264e+03   4.366 1.32e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) condNL condWL
## condNL      -0.739              
## condWL      -0.719  0.501       
## scale(base)  0.087  0.080 -0.272
## convergence code: 0
## boundary (singular) fit: see ?isSingular

INLAB VS. ONLINE ALIGNMENT

Suggests people in online task are overall more aligned than inlab? Might be being driven by high BL alignment for online 2 ppts. Again, overall, WL people more aligned than BL; NL and BL don’t sig differ.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: I(log(is_match + 0.001)) ~ 1 + exp * cond + scale(base) + (1 |  
##     subj_code_1) + (1 | subj_code_2)
##    Data: data_both
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -587.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.7410 -0.6271  0.0173  0.6108  3.7771 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.08462  0.2909  
##  subj_code_2 (Intercept) 0.07700  0.2775  
##  Residual                0.03682  0.1919  
## Number of obs: 5018, groups:  subj_code_1, 242; subj_code_2, 242
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -2.25889    0.06189  359.38000 -36.498  < 2e-16 ***
## exponline           0.20524    0.09159  359.69601   2.241 0.025643 *  
## condNL              0.11467    0.08842  357.63588   1.297 0.195514    
## condWL              0.35382    0.09007  364.10030   3.928 0.000102 ***
## scale(base)         0.24930    0.01031 3745.52715  24.181  < 2e-16 ***
## exponline:condNL   -0.18207    0.12840  358.78260  -1.418 0.157058    
## exponline:condWL   -0.22620    0.13047  359.21757  -1.734 0.083838 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) expnln condNL condWL scl(b) exp:NL
## exponline   -0.676                                   
## condNL      -0.698  0.472                            
## condWL      -0.691  0.467  0.480                     
## scale(base)  0.064 -0.041 -0.011 -0.105              
## expnln:cnNL  0.482 -0.713 -0.689 -0.332  0.023       
## expnln:cnWL  0.474 -0.702 -0.331 -0.685  0.019  0.500

combined NL v WL only

Again, WL has higher alignment than NL Effect of xperiment disappears so again seems to back up idea that higher online alignment in full model is from online:BL people.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: I(log(is_match + 0.001)) ~ 1 + exp * cond + scale(base) + (1 |  
##     subj_code_1) + (1 | subj_code_2)
##    Data: data_bothNLWL
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -708.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3718 -0.6139  0.0300  0.5939  3.7924 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.09453  0.3075  
##  subj_code_2 (Intercept) 0.09017  0.3003  
##  Residual                0.03262  0.1806  
## Number of obs: 3325, groups:  subj_code_1, 161; subj_code_2, 161
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        -2.12695    0.06753  240.45502 -31.495  < 2e-16 ***
## exponline           0.02918    0.09586  238.68985   0.304  0.76110    
## condWL              0.27064    0.09692  242.32905   2.792  0.00565 ** 
## scale(base)         0.22695    0.01209 2852.15987  18.772  < 2e-16 ***
## exponline:condWL   -0.04549    0.13779  238.98915  -0.330  0.74159    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) expnln condWL scl(b)
## exponline   -0.702                     
## condWL      -0.700  0.489              
## scale(base)  0.071 -0.010 -0.096       
## expnln:cnWL  0.487 -0.696 -0.697 -0.003

look at just baseline model for alignment across in-lab and online 2

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## I(log(is_match + 0.001)) ~ 1 + exp + scale(base) + (1 | subj_code_1) +  
##     (1 | subj_code_2)
##    Data: data_both
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -579.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.7455 -0.6276  0.0183  0.6113  3.7808 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  subj_code_1 (Intercept) 0.08598  0.2932  
##  subj_code_2 (Intercept) 0.07855  0.2803  
##  Residual                0.03688  0.1920  
## Number of obs: 5018, groups:  subj_code_1, 242; subj_code_2, 242
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   -2.10823    0.03684  352.27206 -57.219   <2e-16 ***
## exponline      0.07176    0.05328  353.58807   1.347    0.179    
## scale(base)    0.25475    0.01022 3556.28842  24.921   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) expnln
## exponline   -0.692       
## scale(base)  0.016 -0.038