In sorting, how similar are people’s sorts within conditions, and how does this vary across conditions?
With labels people have significantly more similar sorts than do Baseline or No labels people. Baseline and No labels people do not significantly differ in alignment.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_inlab
##
## REML criterion at convergence: -231.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.5503 -0.5982 0.0240 0.5932 3.4683
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.11184 0.3344
## subj_code_2 (Intercept) 0.10207 0.3195
## Residual 0.03746 0.1935
## Number of obs: 2713, groups: subj_code_1, 126; subj_code_2, 126
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.30669 0.07088 195.57535 -32.543 < 2e-16 ***
## condNL 0.11997 0.10132 194.89618 1.184 0.238
## condWL 0.41741 0.10346 200.33342 4.035 7.78e-05 ***
## scale(base) 0.17929 0.01410 2477.13270 12.714 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condNL condWL
## condNL -0.698
## condWL -0.690 0.480
## scale(base) 0.053 -0.014 -0.126
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_NLWL
##
## REML criterion at convergence: -309.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.1900 -0.5995 0.0267 0.5774 3.6821
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.12262 0.3502
## subj_code_2 (Intercept) 0.11302 0.3362
## Residual 0.03317 0.1821
## Number of obs: 1723, groups: subj_code_1, 82; subj_code_2, 82
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.15807 0.07606 131.61459 -28.373 <2e-16 ***
## condWL 0.30606 0.10938 133.62399 2.798 0.0059 **
## scale(base) 0.18561 0.01653 1664.05209 11.227 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condWL
## condWL -0.700
## scale(base) 0.072 -0.116
No labels and With labels people do not significantly differ in alignment
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online
##
## REML criterion at convergence: -1229.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.5156 -0.6459 -0.0255 0.6030 3.4967
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.06369 0.2524
## subj_code_2 (Intercept) 0.06247 0.2499
## Residual 0.01637 0.1279
## Number of obs: 1446, groups: subj_code_1, 75; subj_code_2, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.475711 0.059991 106.059474 -24.60 <2e-16 ***
## condWL -0.002472 0.083159 105.900246 -0.03 0.976
## scale(base) 0.194524 0.016436 809.796893 11.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condWL
## condWL -0.721
## scale(base) 0.012 -0.007
With labels = greater alignment than NL (p=.016)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online2
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: -400.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0511 -0.6421 -0.0024 0.6329 3.9326
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.05731 0.2394
## subj_code_2 (Intercept) 0.05351 0.2313
## Residual 0.03546 0.1883
## Number of obs: 2305, groups: subj_code_1, 116; subj_code_2, 116
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.00524 0.05636 175.74949 -35.580 <2e-16 ***
## condNL -0.05396 0.07765 175.06444 -0.695 0.488
## condWL 0.06870 0.07969 178.76205 0.862 0.390
## scale(base) 0.33204 0.01440 1172.83440 23.065 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condNL condWL
## condNL -0.723
## condWL -0.711 0.508
## scale(base) 0.040 0.034 -0.123
## refitting model(s) with ML (instead of REML)
## Data: data_full_online2
## Models:
## m0: I(log(is_match + 0.001)) ~ 1 + scale(base) + (1 | subj_code_1) +
## m0: (1 | subj_code_2)
## m1: I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## m1: (1 | subj_code_2)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## m0 5 -407.02 -378.31 208.51 -417.02
## m1 7 -405.49 -365.29 209.75 -419.49 2.4735 2 0.2903
Look at specific comparisons
BL v NL - not sig diff
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online2_BLNL
##
## REML criterion at convergence: -97.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8572 -0.6585 0.0009 0.6253 3.7327
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.06687 0.2586
## subj_code_2 (Intercept) 0.05254 0.2292
## Residual 0.03986 0.1997
## Number of obs: 1564, groups: subj_code_1, 78; subj_code_2, 78
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.09099 0.05854 124.79823 -35.719 <2e-16 ***
## condNL -0.05154 0.08070 124.58436 -0.639 0.524
## scale(base) 0.30794 0.01616 920.70288 19.060 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condNL
## condNL -0.726
## scale(base) -0.030 0.042
BL v WL - not sig diff
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online2_BLWL
##
## REML criterion at convergence: -314.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2165 -0.6460 -0.0361 0.6184 4.0620
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.05044 0.2246
## subj_code_2 (Intercept) 0.04683 0.2164
## Residual 0.03391 0.1841
## Number of obs: 1444, groups: subj_code_1, 75; subj_code_2, 75
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -1.92957 0.05325 125.76657 -36.24 <2e-16 ***
## condWL 0.04294 0.07528 127.49875 0.57 0.569
## scale(base) 0.37224 0.01841 586.37716 20.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condWL
## condWL -0.717
## scale(base) 0.119 -0.165
NL v WL - WL sig higher alignment than NL
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online2_NLWL
##
## REML criterion at convergence: -413.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4643 -0.6360 0.0241 0.6169 3.8334
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.06042 0.2458
## subj_code_2 (Intercept) 0.06431 0.2536
## Residual 0.03206 0.1791
## Number of obs: 1602, groups: subj_code_1, 79; subj_code_2, 79
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.05552 0.05680 105.77675 -36.186 <2e-16 ***
## condWL 0.16981 0.08257 108.20192 2.057 0.0421 *
## scale(base) 0.29075 0.01722 894.16901 16.887 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condWL
## condWL -0.699
## scale(base) 0.121 -0.170
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + scale(subj_1_area):scale(subj_2_area) +
## (1 | subj_code_1) + (1 | subj_code_2)
## Data: data_full_online2_2
##
## REML criterion at convergence: -63.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2423 -0.6392 -0.0123 0.6103 3.6776
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.17089 0.4134
## subj_code_2 (Intercept) 0.15861 0.3983
## Residual 0.03711 0.1926
## Number of obs: 2268, groups: subj_code_1, 115; subj_code_2, 115
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) -1.986e+00 5.414e-02 2.259e+02 -36.686
## scale(subj_1_area):scale(subj_2_area) -3.042e-03 5.612e-03 2.077e+03 -0.542
## Pr(>|t|)
## (Intercept) <2e-16 ***
## scale(subj_1_area):scale(subj_2_area) 0.588
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## s(_1_):(_2_ -0.027
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: align_by_screen ~ 1 + cond + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_full_online2_2
##
## REML criterion at convergence: -1253.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3162 -0.6867 -0.0209 0.6372 4.0253
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.00000 0.0000
## subj_code_2 (Intercept) 0.00000 0.0000
## Residual 0.03325 0.1823
## Number of obs: 2268, groups: subj_code_1, 115; subj_code_2, 115
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.487e-03 7.092e-03 2.264e+03 0.351 0.726
## condNL 2.543e-03 9.440e-03 2.264e+03 0.269 0.788
## condWL -1.057e-02 1.012e-02 2.264e+03 -1.044 0.296
## scale(base) 1.800e-02 4.122e-03 2.264e+03 4.366 1.32e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) condNL condWL
## condNL -0.739
## condWL -0.719 0.501
## scale(base) 0.087 0.080 -0.272
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Suggests people in online task are overall more aligned than inlab? Might be being driven by high BL alignment for online 2 ppts. Again, overall, WL people more aligned than BL; NL and BL don’t sig differ.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: I(log(is_match + 0.001)) ~ 1 + exp * cond + scale(base) + (1 |
## subj_code_1) + (1 | subj_code_2)
## Data: data_both
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: -587.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.7410 -0.6271 0.0173 0.6108 3.7771
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.08462 0.2909
## subj_code_2 (Intercept) 0.07700 0.2775
## Residual 0.03682 0.1919
## Number of obs: 5018, groups: subj_code_1, 242; subj_code_2, 242
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.25889 0.06189 359.38000 -36.498 < 2e-16 ***
## exponline 0.20524 0.09159 359.69601 2.241 0.025643 *
## condNL 0.11467 0.08842 357.63588 1.297 0.195514
## condWL 0.35382 0.09007 364.10030 3.928 0.000102 ***
## scale(base) 0.24930 0.01031 3745.52715 24.181 < 2e-16 ***
## exponline:condNL -0.18207 0.12840 358.78260 -1.418 0.157058
## exponline:condWL -0.22620 0.13047 359.21757 -1.734 0.083838 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) expnln condNL condWL scl(b) exp:NL
## exponline -0.676
## condNL -0.698 0.472
## condWL -0.691 0.467 0.480
## scale(base) 0.064 -0.041 -0.011 -0.105
## expnln:cnNL 0.482 -0.713 -0.689 -0.332 0.023
## expnln:cnWL 0.474 -0.702 -0.331 -0.685 0.019 0.500
Again, WL has higher alignment than NL Effect of xperiment disappears so again seems to back up idea that higher online alignment in full model is from online:BL people.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: I(log(is_match + 0.001)) ~ 1 + exp * cond + scale(base) + (1 |
## subj_code_1) + (1 | subj_code_2)
## Data: data_bothNLWL
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: -708.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.3718 -0.6139 0.0300 0.5939 3.7924
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.09453 0.3075
## subj_code_2 (Intercept) 0.09017 0.3003
## Residual 0.03262 0.1806
## Number of obs: 3325, groups: subj_code_1, 161; subj_code_2, 161
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.12695 0.06753 240.45502 -31.495 < 2e-16 ***
## exponline 0.02918 0.09586 238.68985 0.304 0.76110
## condWL 0.27064 0.09692 242.32905 2.792 0.00565 **
## scale(base) 0.22695 0.01209 2852.15987 18.772 < 2e-16 ***
## exponline:condWL -0.04549 0.13779 238.98915 -0.330 0.74159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) expnln condWL scl(b)
## exponline -0.702
## condWL -0.700 0.489
## scale(base) 0.071 -0.010 -0.096
## expnln:cnWL 0.487 -0.696 -0.697 -0.003
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## I(log(is_match + 0.001)) ~ 1 + exp + scale(base) + (1 | subj_code_1) +
## (1 | subj_code_2)
## Data: data_both
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: -579.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.7455 -0.6276 0.0183 0.6113 3.7808
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_code_1 (Intercept) 0.08598 0.2932
## subj_code_2 (Intercept) 0.07855 0.2803
## Residual 0.03688 0.1920
## Number of obs: 5018, groups: subj_code_1, 242; subj_code_2, 242
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -2.10823 0.03684 352.27206 -57.219 <2e-16 ***
## exponline 0.07176 0.05328 353.58807 1.347 0.179
## scale(base) 0.25475 0.01022 3556.28842 24.921 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) expnln
## exponline -0.692
## scale(base) 0.016 -0.038