2+2
## [1] 4
We can simply consider a vector to be an ordered sequence of values of the same data type. A sequence is ordered such that the two sequences represented below are treated as two different entities by R:
Vectors
c(100,20,40,15,90)
## [1] 100 20 40 15 90
vector <- c(100,20,40,15,90)
Type | Example |
---|---|
numeric | c(1,2,3) |
logical/Boolean | c(TRUE,FALSE,T,F) |
character | c(“A”,“a”,“Apple”) |
Lists are a convenient way to store objects within the R environment: containers of objects.
## [[1]]
## [1] "List are containers of objects "
## [2] " They are a convenient way to store objects within the R environment"
mode(x = tokenization_results)
## [1] "list"
first_vector <- c("a","b","c")
second_vector <- c(1,2,3)
vector_list <- list(first_vector, second_vector)
vector_list
## [[1]]
## [1] "a" "b" "c"
##
## [[2]]
## [1] 1 2 3
mode(x=vector_list)
## [1] "list"
vector_list[[1]]
## [1] "a" "b" "c"
vector_list[[2]][[3]]
## [1] 3
Data frames can be seen simply as lists respecting the following requisites:
Data frames
library(tidyverse)
a_data_frame <- tibble(first_attribute = c("alpha","beta","gamma"), second_attribute = c(14,20,11))
a_data_frame
## # A tibble: 3 x 2
## first_attribute second_attribute
## <chr> <dbl>
## 1 alpha 14
## 2 beta 20
## 3 gamma 11
tibble(c("alpha","beta","gamma"), c(14,20,11))
## # A tibble: 3 x 2
## `c("alpha", "beta", "gamma")` `c(14, 20, 11)`
## <chr> <dbl>
## 1 alpha 14
## 2 beta 20
## 3 gamma 11
a_data_frame$second_attribute
## [1] 14 20 11
a_data_frame$third_attribute <- c(TRUE,FALSE,FALSE)
a_data_frame
## # A tibble: 3 x 3
## first_attribute second_attribute third_attribute
## <chr> <dbl> <lgl>
## 1 alpha 14 TRUE
## 2 beta 20 FALSE
## 3 gamma 11 FALSE