date()
## [1] "Thu Sep 10 16:41:01 2020"
Due Date: September 13, 2020
Total Points: 42
library(ggplot2)
1 The following values are the annual number hurricanes that have hit the United States since 1990. Answer the questions by typing R commands.
0 1 1 1 0 2 2 1 3 3 0 0 1 2 6 6 0 1 3 0 1
hurricanes = c(0, 1, 1, 1, 0, 2, 2, 1, 3, 3, 0, 0, 1, 2, 6, 6, 0, 1, 3, 0, 1)
hurricanes
## [1] 0 1 1 1 0 2 2 1 3 3 0 0 1 2 6 6 0 1 3 0 1
length(hurricanes)
## [1] 21
year = 1990:2010
hurricanes2.df = data.frame(year, hurricanes)
(hurricanes2.df)
## year hurricanes
## 1 1990 0
## 2 1991 1
## 3 1992 1
## 4 1993 1
## 5 1994 0
## 6 1995 2
## 7 1996 2
## 8 1997 1
## 9 1998 3
## 10 1999 3
## 11 2000 0
## 12 2001 0
## 13 2002 1
## 14 2003 2
## 15 2004 6
## 16 2005 6
## 17 2006 0
## 18 2007 1
## 19 2008 3
## 20 2009 0
## 21 2010 1
sum(hurricanes)
## [1] 34
2 Answer the following questions by typing R commands.
"x" = seq(0, 25)
x
## [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
## [26] 25
length(x)
## [1] 26
mean(x)
## [1] 12.5
x2 = x - (mean(x))
x2
## [1] -12.5 -11.5 -10.5 -9.5 -8.5 -7.5 -6.5 -5.5 -4.5 -3.5 -2.5 -1.5
## [13] -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5
## [25] 11.5 12.5
3 Suppose you keep track of your mileage each time you fill your car’s gas tank. At your last 8 fill-ups the mileage was
65311 65624 65908 66219 66499 66821 67145 67447
mileage = c(65311, 65624, 65908, 66219, 66499, 66821, 67145, 67447)
mileage
## [1] 65311 65624 65908 66219 66499 66821 67145 67447
diff = diff(mileage)
diff
## [1] 313 284 311 280 322 324 302
range(diff)
## [1] 280 324
mean(diff)
## [1] 305.1429
4 Create the following sequences using the seq() and rep() functions as appropriate.
rep("a", 4)
## [1] "a" "a" "a" "a"
seq(1,100, 2)
## [1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
## [26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
rep = c (rep(1,3), rep(2,3), rep(3,3))
rep
## [1] 1 1 1 2 2 2 3 3 3
rep2 = c (rep(1,3), rep(2,2), rep(3,1))
rep2
## [1] 1 1 1 2 2 3
rep3 = c (rep(1:5),rep(4:1))
rep3
## [1] 1 2 3 4 5 4 3 2 1
5 Read the monthly precipitation dataset from my website (https://moraviansoundscapes.music.fsu.edu/sites/g/files/upcbnu1806/files/Media/Sciuchetti/ALMonthlyP.txt).
loc = "https://moraviansoundscapes.music.fsu.edu/sites/g/files/upcbnu1806/files/Media/Sciuchetti/ALMonthlyP.txt"
AL = read.table(file = loc, header = TRUE)
head(AL)
## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1 1895 7.37 1.41 7.17 2.72 3.06 4.04 4.58 4.00 3.41 2.28 1.83 5.83
## 2 1896 2.47 7.46 6.23 4.34 2.92 4.50 3.78 1.94 2.67 1.59 6.20 1.32
## 3 1897 3.85 3.74 14.40 4.99 2.87 2.12 3.93 3.66 0.03 1.74 2.13 8.54
## 4 1898 7.07 1.34 4.43 4.29 1.86 2.61 5.52 3.67 2.83 3.72 3.55 2.43
## 5 1899 5.79 6.39 9.93 2.99 1.50 2.22 6.04 3.44 0.57 1.85 3.93 7.28
## 6 1900 3.64 4.92 4.17 10.56 3.86 12.40 4.64 2.26 2.76 6.40 3.44 3.25
min(AL$Jan)
## [1] 0.8
max(AL$Jan)
## [1] 13.09
sort(AL$Feb)
## [1] 0.76 1.25 1.29 1.32 1.34 1.39 1.41 1.45 1.86 2.09 2.14 2.23
## [13] 2.29 2.37 2.39 2.45 2.48 2.52 2.60 2.69 2.71 2.73 2.82 2.91
## [25] 2.92 3.00 3.13 3.16 3.21 3.22 3.24 3.24 3.25 3.35 3.37 3.40
## [37] 3.43 3.46 3.53 3.56 3.56 3.60 3.60 3.60 3.68 3.72 3.73 3.74
## [49] 3.81 3.82 3.87 3.94 4.05 4.11 4.23 4.26 4.27 4.31 4.32 4.34
## [61] 4.38 4.39 4.41 4.43 4.47 4.52 4.53 4.69 4.74 4.75 4.80 4.84
## [73] 4.89 4.92 4.94 4.98 5.02 5.04 5.04 5.08 5.13 5.17 5.29 5.49
## [85] 5.56 5.59 5.63 5.80 5.90 6.02 6.04 6.09 6.10 6.12 6.39 6.56
## [97] 6.56 6.57 6.64 6.70 7.02 7.05 7.14 7.46 7.50 7.56 7.80 7.89
## [109] 8.13 8.24 8.46 8.57 8.60 8.76 9.08 9.23 9.26 9.58 9.85 10.13
## [121] 10.18 10.69 11.42 12.16 13.35
var(AL$Mar)
## [1] 7.41769
quantile(AL$Apr, c(.95))
## 95%
## 10.21
ggplot(AL, aes(x = Year, y = Apr)) +
geom_line() +
ylab("April Precipitation in Alabama (in)")