Call libraries

Contrast Codes

#control = -.5; gratitude = .5
d$CvG <- 
  (d$condition == 'controlFear')*(-.5) + 
  (d$condition == 'controlNoFear')*(-.5) + 
  (d$condition == 'gratFear')*(.5) +
  (d$condition == 'gratNoFear')*(.5)

#Fear expressed = -.5; no fear expressed = .5
d$FvNF <- 
  (d$condition =='controlFear')*(-.5) + 
  (d$condition =='controlNoFear')*(.5) + 
  (d$condition =='gratFear')*(-.5) + 
  (d$condition =='gratNoFear')*(.5)

#Contrast Codes for immigrant friend 
#-1/2 & 1 = no; +1/2 & 0 = yes
d$immFriYes_.5 <- as.factor(d$immFRI)
d$immFriYes_.5 <- (d$immFRI == '0')*(.5) + (d$immFRI == '1')*(-.5)

Condition Differences

1a. Are there difference between the conditions for perceived expression of gratitude in Marel?

summary(model<-lmer(gratSCALE ~ CvG*FvNF + (1|region), data = d))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: gratSCALE ~ CvG * FvNF + (1 | region)
##    Data: d
## 
## REML criterion at convergence: 983.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.9248 -0.4107  0.4049  0.7080  0.9644 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.01297  0.1139  
##  Residual             0.79906  0.8939  
## Number of obs: 372, groups:  region, 6
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   6.37767    0.06696   4.03392  95.244 6.48e-08 ***
## CvG           0.09814    0.09424 365.45451   1.041   0.2984    
## FvNF          0.19441    0.09359 367.46583   2.077   0.0385 *  
## CvG:FvNF      0.29498    0.18711 367.13142   1.577   0.1158    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) CvG    FvNF  
## CvG       0.048              
## FvNF     -0.006  0.071       
## CvG:FvNF  0.042  0.014  0.074

There is a significant effect on reader’s perception of gratitude for fear expression in Marel’s story. When Marel DOES NOT express fear (M=6.46), participants rate him as being .19 points more grateful compared to when he expresses fear of living in the Honduras (M=6.29), b=.19, t(367.47)=2.08, p=.036.


p1 <- plot_model(model, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p1 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating of percieved gratitudes") + theme_sjplot()

d$fear <- ifelse(d$FvNF == -.5, "fear", "no fear")
d %>% ggplot(aes(condition, gratSCALE, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(6, 7))

1b. What are the simple effects for no fear control vs. gratitude?

d$NF_0 <- 
  (d$condition == 'controlFear')*(1) + 
  (d$condition == 'controlNoFear')*(0) + 
  (d$condition == 'gratFear')*(1) +
  (d$condition == 'gratNoFear')*(0)

summary(m1b<-lmer(gratSCALE ~ CvG*NF_0 + (1|region), data = d))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: gratSCALE ~ CvG * NF_0 + (1 | region)
##    Data: d
## 
## REML criterion at convergence: 983.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.9248 -0.4107  0.4049  0.7080  0.9644 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.01297  0.1139  
##  Residual             0.79906  0.8939  
## Number of obs: 372, groups:  region, 6
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   6.47488    0.08145   9.04307  79.498 3.53e-14 ***
## CvG           0.24563    0.13374 364.52662   1.837   0.0671 .  
## NF_0         -0.19441    0.09359 367.46583  -2.077   0.0385 *  
## CvG:NF_0     -0.29498    0.18711 367.13142  -1.577   0.1158    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) CvG    NF_0  
## CvG       0.110              
## NF_0     -0.569 -0.102       
## CvG:NF_0 -0.077 -0.710  0.074
mean(d$gratSCALE[d$NF_0 == 0 & d$condition == 'controlNoFear'])
## [1] 6.364486
mean(d$gratSCALE[d$NF_0 == 0 & d$condition == 'gratNoFear'])
## [1] 6.595833

There are marginally signficant effects for control vs. gratitude within the no fear condition. Specifically, readers perceive Marel as having .25 points more gratitude when he expresses gratitude in his story (M=6.60) compared to the control (M=6.36), t(364.53)=1.84, p=.067. ***

2. Are there differences between conditions for willingness to acceptance Marel?

summary(m2 <- lm(acceptSCALE ~ CvG*FvNF, data = d))
## 
## Call:
## lm(formula = acceptSCALE ~ CvG * FvNF, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6500 -0.6683  0.3500  1.0616  2.0145 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.28902    0.08365  63.224   <2e-16 ***
## CvG          0.05746    0.16731   0.343   0.7315    
## FvNF         0.54236    0.16731   3.242   0.0013 ** 
## CvG:FvNF     0.24427    0.33462   0.730   0.4659    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.605 on 368 degrees of freedom
## Multiple R-squared:  0.02841,    Adjusted R-squared:  0.02049 
## F-statistic: 3.587 on 3 and 368 DF,  p-value: 0.01397

There is a significant effect of fear expression on reader’s willingness to accept Marel into their community.When Marel DOES NOT expresses fear living in the Honduras, participants rate themselves as being .54 points more willing to accept Marel into their community (M=5.55) compared to when he DOES express fear (M=5.01), b=.54, t(368)=3.24, p=.001. ***

d %>% ggplot(aes(condition, acceptSCALE, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(3, 7))

p2 <- plot_model(m2, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p2 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating for willingness to accept Marel") + theme_sjplot()

3. Are there differences between conditions for believing Marel is trustworthy?

mcSummary(m3 <-lm(trustworthy ~ CvG*FvNF, data = d)) 
## lm(formula = trustworthy ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq    F     p
## Model       23.758   3 7.919 0.042 5.44 0.001
## Error      535.758 368 1.456                 
## Corr Total 559.516 371 1.508                 
## 
##   RMSE AdjEtaSq
##  1.207    0.035
## 
## Coefficients
##               Est StErr      t    SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept) 5.409 0.063 86.014 10770.969 0.953    NA  5.286   5.533 0.000
## CvG         0.063 0.126  0.502     0.367 0.001 0.995 -0.184   0.311 0.616
## FvNF        0.495 0.126  3.936    22.549 0.040 0.990  0.248   0.742 0.000
## CvG:FvNF    0.296 0.252  1.176     2.013 0.004 0.994 -0.199   0.791 0.240
mean(d$trustworthy[d$FvNF == -.5])
## [1] 5.162162
mean(d$trustworthy[d$FvNF == .5])
## [1] 5.641711

Yes, there is a significant effect of fear expression on whether readers think Marel is trustworthy. Specifically, participants rate marel as .50 points more trustworthy when his story DOES NOT expressess fear (M=5.64) compared to when he does express fear (M=5.16), t(368)=3.94,PRE=.04, p < .001. ***

d %>% ggplot(aes(condition, trustworthy, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(4, 6))

p3 <- plot_model(m3, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p3 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating for Marel's trustworthiness") + theme_sjplot()

4. Are there differences between condition for feeling of closeness to Marel?

mcSummary(m4<-lm(close_1 ~ CvG*FvNF, data = d))
## lm(formula = close_1 ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                  SS  df    MS EtaSq     F     p
## Model         7.508   3 2.503 0.007 0.805 0.492
## Error      1143.941 368 3.109                  
## Corr Total 1151.449 371 3.104                  
## 
##   RMSE AdjEtaSq
##  1.763   -0.002
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  3.855 0.092 41.953 5471.118 0.827    NA  3.675   4.036 0.000
## CvG          0.096 0.184  0.524    0.855 0.001 0.995 -0.265   0.458 0.600
## FvNF         0.217 0.184  1.183    4.352 0.004 0.990 -0.144   0.579 0.237
## CvG:FvNF    -0.299 0.368 -0.814    2.058 0.002 0.994 -1.022   0.424 0.416
mean(d$close_1[d$FvNF == -.5])
## [1] 3.745946
mean(d$close_1[d$FvNF == .5])
## [1] 3.967914

There are no effects for fear expression on closeness, p=.237. ***

d %>% ggplot(aes(condition, close_1, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(3, 4.5))

5. Are there differences between condition for oppisition to immigration?

mcSummary(m5<-lm(OppositionToImm ~ CvG*FvNF, data = d))
## lm(formula = OppositionToImm ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        5.457   3 1.819 0.011 1.317 0.268
## Error      508.188 368 1.381                  
## Corr Total 513.645 371 1.384                  
## 
##   RMSE AdjEtaSq
##  1.175    0.003
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  2.789 0.061 45.540 2863.882 0.849    NA  2.669   2.910 0.000
## CvG         -0.059 0.123 -0.483    0.322 0.001 0.995 -0.300   0.182 0.630
## FvNF        -0.237 0.123 -1.936    5.173 0.010 0.990 -0.478   0.004 0.054
## CvG:FvNF     0.035 0.245  0.143    0.028 0.000 0.994 -0.447   0.517 0.886
mean(d$OppositionToImm[d$FvNF == -.5]) #fear
## [1] 2.908108
mean(d$OppositionToImm[d$FvNF == .5]) #no fear
## [1] 2.673797

There is a marginally significant effect of fear expression on whether readers oppose immigration (1 = increase immigration a lot, 7 = decrease immigration a lot). Specifically, there is a .24 point rating decrease in opposition to immigration from fear expression (M=2.91) to no fear expression (M=2.67), t(368)=-1.94,PRE=.01, p=.054. ***

d %>% ggplot(aes(condition, OppositionToImm, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(2, 4))

p5 <- plot_model(m5, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p5 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating opposition to immigration") + theme_sjplot()

6. Are there condition differences for opposition to speedy eligibility for government services?

mcSummary(m6<-lm(OppositionToElig ~ CvG*FvNF, data = d))
## lm(formula = OppositionToElig ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        3.774   3 1.258 0.008 0.948 0.418
## Error      488.428 368 1.327                  
## Corr Total 492.202 371 1.327                  
## 
##   RMSE AdjEtaSq
##  1.152        0
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  2.313  0.06 38.526 1969.949 0.801    NA  2.195   2.431 0.000
## CvG         -0.136  0.12 -1.128    1.690 0.003 0.995 -0.372   0.101 0.260
## FvNF         0.088  0.12  0.730    0.707 0.001 0.990 -0.148   0.324 0.466
## CvG:FvNF     0.242  0.24  1.008    1.348 0.003 0.994 -0.230   0.714 0.314

There are no condition effects on opposition/support for speedy eligibility for government services. ***

7. Are there condition differences for willingness to help with resume?

mcSummary(lm(resume ~ CvG*FvNF, data = d))
## lm(formula = resume ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        0.922   3 0.307 0.002 0.215 0.886
## Error      526.981 368 1.432                  
## Corr Total 527.903 371 1.423                  
## 
##   RMSE AdjEtaSq
##  1.197   -0.006
## 
## Coefficients
##                Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  1.980 0.062 31.749 1443.458 0.733    NA  1.858   2.103 0.000
## CvG         -0.003 0.125 -0.024    0.001 0.000 0.995 -0.248   0.242 0.981
## FvNF        -0.008 0.125 -0.060    0.005 0.000 0.990 -0.253   0.238 0.952
## CvG:FvNF    -0.200 0.249 -0.802    0.922 0.002 0.994 -0.691   0.290 0.423

there are no significant effects on willingness to help write resume for Marel. ***

8. Are there condition differencs for liking Marel?

mcSummary(m8<-lm(likeSCALE ~ CvG*FvNF, data = d))
## lm(formula = likeSCALE ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       13.699   3 4.566 0.021 2.576 0.054
## Error      652.398 368 1.773                  
## Corr Total 666.096 371 1.795                  
## 
##   RMSE AdjEtaSq
##  1.331    0.013
## 
## Coefficients
##               Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept) 5.013 0.069 72.240 9251.571 0.934    NA  4.877   5.150 0.000
## CvG         0.154 0.139  1.111    2.187 0.003 0.995 -0.119   0.427 0.267
## FvNF        0.361 0.139  2.604   12.023 0.018 0.990  0.089   0.634 0.010
## CvG:FvNF    0.132 0.278  0.475    0.399 0.001 0.994 -0.414   0.678 0.635
mean(d$likeSCALE[d$FvNF == -.5])
## [1] 4.832432
mean(d$likeSCALE[d$FvNF == .5])
## [1] 5.178253

There is a significant effect for fear condition on liking Marel. Specifically, readers like Marel less when he expresses fear (M=4.83) in his story compared to when he does not express fear (M=5.18) by .36 points. ***

d %>% ggplot(aes(condition, likeSCALE, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(3, 6))

p8 <- plot_model(m8, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p8 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating for liking Marel") + theme_sjplot()

9. Are there condition differences for wanting to befriend Marel?

mcSummary(m9<-lm(befriendSCALE ~ CvG*FvNF, data = d))
## lm(formula = befriendSCALE ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        9.952   3 3.317 0.013 1.572 0.196
## Error      776.599 368 2.110                  
## Corr Total 786.550 371 2.120                  
## 
##   RMSE AdjEtaSq
##  1.453    0.005
## 
## Coefficients
##                Est StErr      t    SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  5.344 0.076 70.583 10513.478 0.931    NA  5.195   5.493 0.000
## CvG          0.082 0.151  0.544     0.625 0.001 0.995 -0.215   0.380 0.587
## FvNF         0.321 0.151  2.118     9.463 0.012 0.990  0.023   0.618 0.035
## CvG:FvNF    -0.034 0.303 -0.111     0.026 0.000 0.994 -0.629   0.562 0.911
mean(d$befriendSCALE[d$FvNF == -.5])
## [1] 5.183784
mean(d$befriendSCALE[d$FvNF == .5])
## [1] 5.5

There is a significant effect for fear condition on willingness to befriend Marel. Specifically, readers are less willing to befriend Marel when he expresses fear (M=5.18) in his story compared to when he does not express fear (M=5.50) by .32 points, PRE = .012, p = .035. ***

d %>% ggplot(aes(condition, befriendSCALE, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(4, 6))

p9 <- plot_model(m9, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p9 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating for willingness to befriend Marel") + theme_sjplot()

10. Are there condition differences for perceived cooperativeness in Marel?

mcSummary(m10<-lm(cooperative ~ CvG*FvNF, data = d))
## lm(formula = cooperative ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        8.354   3 2.785  0.02 2.447 0.063
## Error      418.708 368 1.138                  
## Corr Total 427.062 371 1.151                  
## 
##   RMSE AdjEtaSq
##  1.067    0.012
## 
## Coefficients
##               Est StErr       t    SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept) 5.801 0.056 104.339 12386.714 0.967    NA  5.692   5.910 0.000
## CvG         0.155 0.111   1.390     2.197 0.005 0.995 -0.064   0.373 0.165
## FvNF        0.261 0.111   2.348     6.272 0.015 0.990  0.042   0.480 0.019
## CvG:FvNF    0.165 0.222   0.741     0.625 0.001 0.994 -0.273   0.602 0.459
mean(d$cooperative[d$FvNF == -.5])
## [1] 5.67027
mean(d$cooperative[d$FvNF == .5])
## [1] 5.914439

There is a significant effect for fear on perception of Marel’s cooperativeness. Readers perceive Marel as less cooperative (M=5.67) when he expresses fear in his story compared to when he does not express any fear (M=5.91), PRE =.015, p = .019. ***

d %>% ggplot(aes(condition, cooperative, fill = fear)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(5, 7))

p10 <- plot_model(m10, type = "pred", terms = c("FvNF"), legend.title = "FvNF")

p10 + labs(title = " ", 
          x = "fear (-.5) vs no fear (.5)", 
          y = "rating for Marel's perceived cooperativeness") + theme_sjplot()

11. Are there condition differences in williness to donate?

mcSummary(donate<-lm(donate ~ CvG*FvNF, data = d))
## lm(formula = donate ~ CvG * FvNF, data = d)
## 
## Omnibus ANOVA
##                SS  df    MS EtaSq     F     p
## Model       0.040   3 0.013 0.001 0.084 0.969
## Error      51.821 326 0.159                  
## Corr Total 51.862 329 0.158                  
## 
##   RMSE AdjEtaSq
##  0.399   -0.008
## 
## Coefficients
##                Est StErr      t SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)  0.252 0.022 11.410 20.696 0.285    NA  0.208   0.295 0.000
## CvG         -0.014 0.044 -0.325  0.017 0.000 0.998 -0.101   0.072 0.746
## FvNF         0.016 0.044  0.358  0.020 0.000 0.991 -0.071   0.103 0.720
## CvG:FvNF     0.010 0.088  0.116  0.002 0.000 0.992 -0.163   0.184 0.908

There are no condition effects for willingness to donate money. ***

Differences between political parties

0. Make new dataset and codes for party

#contrast codes for party
d$DvR <- 
  (d$party=="Democrat")*(-.5) + 
  (d$party=="Independent")*(0) + 
  (d$party=="Republican")*(.5)

d$IvDR<- ifelse(d$party=="Independent", (-2/3), (1/3))

d$IndCode <- ifelse(d$party == "Independent" | is.na(d$party), 1, 0)

#new dataset without true independents
dNoI <- filter(d, IndCode == 0)
dNoI$dem_0 <- (0)*(dNoI$party=="Democrat") + (1)*(dNoI$party=="Republican")
dNoI$rep_0 <- (1)*(dNoI$party=="Democrat") + (0)*(dNoI$party=="Republican")

1a. gratitudeScale ~ Grat x fear x party

#looking at simple effects for democrats
mcSummary(m1p<-lm(gratSCALE ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = gratSCALE ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model        9.786   7 1.398 0.047 1.968 0.059
## Error      200.276 282 0.710                  
## Corr Total 210.062 289 0.727                  
## 
##   RMSE AdjEtaSq
##  0.843    0.023
## 
## Coefficients
##                 Est StErr       t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   6.376 0.056 114.710 9345.008 0.979    NA  6.266   6.485 0.000
## CvG           0.015 0.111   0.134    0.013 0.000 0.793 -0.204   0.234 0.893
## FvNF          0.145 0.111   1.300    1.200 0.006 0.793 -0.074   0.363 0.195
## DvR          -0.223 0.111  -2.004    2.853 0.014 0.915 -0.442  -0.004 0.046
## CvG:FvNF      0.076 0.222   0.343    0.083 0.000 0.794 -0.361   0.514 0.732
## CvG:DvR       0.237 0.222   1.066    0.807 0.004 0.795 -0.201   0.675 0.287
## FvNF:DvR     -0.068 0.222  -0.307    0.067 0.000 0.810 -0.506   0.369 0.759
## CvG:FvNF:DvR -0.797 0.445  -1.793    2.282 0.011 0.796 -1.672   0.078 0.074
dNoI %>% ggplot(aes(condition, gratSCALE, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(6, 7))

1b. interaction between fear X gratitude for democrats

#looking at simple effects for democrats
mcSummary(m2p<-lm(likeSCALE ~ CvG*FvNF*dem_0, data = dNoI))
## lm(formula = likeSCALE ~ CvG * FvNF * dem_0, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       37.079   7 5.297 0.074 3.219 0.003
## Error      464.019 282 1.645                  
## Corr Total 501.097 289 1.734                  
## 
##   RMSE AdjEtaSq
##  1.283    0.051
## 
## Coefficients
##                   Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)     5.259 0.092 57.319 5406.156 0.921    NA  5.079   5.440 0.000
## CvG            -0.017 0.184 -0.095    0.015 0.000 0.674 -0.379   0.344 0.924
## FvNF            0.276 0.184  1.506    3.733 0.008 0.674 -0.085   0.638 0.133
## dem_0          -0.539 0.169 -3.188   16.724 0.035 0.915 -0.872  -0.206 0.002
## CvG:FvNF       -0.035 0.367 -0.095    0.015 0.000 0.675 -0.757   0.687 0.924
## CvG:dem_0       0.365 0.338  1.078    1.913 0.004 0.627 -0.301   1.031 0.282
## FvNF:dem_0      0.284 0.338  0.838    1.156 0.002 0.634 -0.382   0.950 0.403
## CvG:FvNF:dem_0  0.007 0.677  0.010    0.000 0.000 0.629 -1.325   1.339 0.992

1c. interaction between fear x grat for republicans

#looking at simple effects for republicans
mcSummary(likingR<-lm(likeSCALE ~ CvG*FvNF*rep_0, data = dNoI))
## lm(formula = likeSCALE ~ CvG * FvNF * rep_0, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       37.079   7 5.297 0.074 3.219 0.003
## Error      464.019 282 1.645                  
## Corr Total 501.097 289 1.734                  
## 
##   RMSE AdjEtaSq
##  1.283    0.051
## 
## Coefficients
##                   Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)     4.720 0.142 33.201 1813.825 0.796    NA  4.440   5.000 0.000
## CvG             0.347 0.284  1.222    2.456 0.005 0.281 -0.212   0.907 0.223
## FvNF            0.560 0.284  1.970    6.384 0.014 0.281  0.000   1.120 0.050
## rep_0           0.539 0.169  3.188   16.724 0.035 0.915  0.206   0.872 0.002
## CvG:FvNF       -0.028 0.569 -0.049    0.004 0.000 0.281 -1.147   1.091 0.961
## CvG:rep_0      -0.365 0.338 -1.078    1.913 0.004 0.290 -1.031   0.301 0.282
## FvNF:rep_0     -0.284 0.338 -0.838    1.156 0.002 0.293 -0.950   0.382 0.403
## CvG:FvNF:rep_0 -0.007 0.677 -0.010    0.000 0.000 0.290 -1.339   1.325 0.992

2a. befriend ~ grat X fear X part

#looking at simple effects for republicans
mcSummary(befriending<-lm(befriendSCALE ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = befriendSCALE ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       39.684   7 5.669 0.069 2.968 0.005
## Error      538.713 282 1.910                  
## Corr Total 578.397 289 2.001                  
## 
##   RMSE AdjEtaSq
##  1.382    0.045
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   5.293 0.091 58.069 6441.608 0.923    NA  5.114   5.473 0.000
## CvG          -0.065 0.182 -0.357    0.243 0.000 0.793 -0.424   0.294 0.722
## FvNF          0.291 0.182  1.595    4.859 0.009 0.793 -0.068   0.650 0.112
## DvR          -0.647 0.182 -3.548   24.045 0.043 0.915 -1.006  -0.288 0.000
## CvG:FvNF     -0.068 0.365 -0.186    0.066 0.000 0.794 -0.786   0.650 0.852
## CvG:DvR       0.288 0.365  0.789    1.188 0.002 0.795 -0.430   1.005 0.431
## FvNF:DvR      0.455 0.365  1.249    2.979 0.006 0.810 -0.262   1.173 0.213
## CvG:FvNF:DvR -0.346 0.729 -0.474    0.430 0.001 0.796 -1.781   1.089 0.636
dNoI %>% ggplot(aes(condition, befriendSCALE, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(4, 6))

2b. befriend ~ simple effects for dems

#looking at simple effects for democrats
trustD<-lm(trustworthy ~ CvG*FvNF*dem_0, data = dNoI)
mcSummary(trustD)
## lm(formula = trustworthy ~ CvG * FvNF * dem_0, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F p
## Model       34.424   7 4.918 0.095 4.205 0
## Error      329.796 282 1.169              
## Corr Total 364.221 289 1.260              
## 
##   RMSE AdjEtaSq
##  1.081    0.072
## 
## Coefficients
##                   Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)     5.637 0.077 72.874 6210.732 0.950    NA  5.485   5.789 0.000
## CvG            -0.132 0.155 -0.851    0.847 0.003 0.674 -0.436   0.173 0.395
## FvNF            0.343 0.155  2.214    5.735 0.017 0.674  0.038   0.647 0.028
## dem_0          -0.503 0.143 -3.529   14.562 0.042 0.915 -0.784  -0.223 0.000
## CvG:FvNF        0.328 0.309  1.059    1.311 0.004 0.675 -0.282   0.937 0.291
## CvG:dem_0       0.261 0.285  0.913    0.975 0.003 0.627 -0.301   0.822 0.362
## FvNF:dem_0      0.140 0.285  0.490    0.280 0.001 0.634 -0.422   0.701 0.625
## CvG:FvNF:dem_0 -0.085 0.571 -0.149    0.026 0.000 0.629 -1.208   1.038 0.881

2c. befriend ~ simple effects for reps

#looking at simple effects for republicans
mcSummary(trustR<-lm(trustworthy ~ CvG*FvNF*rep_0, data = dNoI))
## lm(formula = trustworthy ~ CvG * FvNF * rep_0, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F p
## Model       34.424   7 4.918 0.095 4.205 0
## Error      329.796 282 1.169              
## Corr Total 364.221 289 1.260              
## 
##   RMSE AdjEtaSq
##  1.081    0.072
## 
## Coefficients
##                   Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)     5.134 0.120 42.835 2145.862 0.867    NA  4.898   5.370 0.000
## CvG             0.129 0.240  0.537    0.338 0.001 0.281 -0.343   0.601 0.591
## FvNF            0.482 0.240  2.012    4.734 0.014 0.281  0.010   0.954 0.045
## rep_0           0.503 0.143  3.529   14.562 0.042 0.915  0.223   0.784 0.000
## CvG:FvNF        0.242 0.479  0.505    0.299 0.001 0.281 -0.701   1.186 0.614
## CvG:rep_0      -0.261 0.285 -0.913    0.975 0.003 0.290 -0.822   0.301 0.362
## FvNF:rep_0     -0.140 0.285 -0.490    0.280 0.001 0.293 -0.701   0.422 0.625
## CvG:FvNF:rep_0  0.085 0.571  0.149    0.026 0.000 0.290 -1.038   1.208 0.881

3a. acceptance Marel ~ grat X fear X party

#looking at simple effects for republicans
mcSummary(accept<-lm(acceptSCALE ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = acceptSCALE ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       49.797   7 7.114 0.067 2.906 0.006
## Error      690.268 282 2.448                  
## Corr Total 740.065 289 2.561                  
## 
##   RMSE AdjEtaSq
##  1.565    0.044
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   5.239 0.103 50.772 6309.903 0.901    NA  5.036   5.442 0.000
## CvG          -0.131 0.206 -0.637    0.994 0.001 0.793 -0.538   0.275 0.525
## FvNF          0.433 0.206  2.098   10.777 0.015 0.793  0.027   0.839 0.037
## DvR          -0.613 0.206 -2.970   21.594 0.030 0.915 -1.019  -0.207 0.003
## CvG:FvNF      0.251 0.413  0.608    0.905 0.001 0.794 -0.561   1.063 0.544
## CvG:DvR       0.144 0.413  0.349    0.299 0.000 0.795 -0.668   0.957 0.727
## FvNF:DvR      0.321 0.413  0.777    1.478 0.002 0.810 -0.492   1.133 0.438
## CvG:FvNF:DvR -0.987 0.825 -1.195    3.497 0.005 0.796 -2.612   0.638 0.233
dNoI %>% ggplot(aes(condition, acceptSCALE, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(4, 6))

4a. cooperation ~ grat x fear x party

#looking at simple effects for republicans
mcSummary(cooperation<-lm(cooperative ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = cooperative ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq    F     p
## Model       12.904   7 1.843 0.045 1.89 0.071
## Error      275.113 282 0.976                 
## Corr Total 288.017 289 0.997                 
## 
##   RMSE AdjEtaSq
##  0.988    0.021
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   5.827 0.065 89.457 7807.075 0.966    NA  5.699   5.956 0.000
## CvG           0.274 0.130  2.106    4.329 0.015 0.793  0.018   0.531 0.036
## FvNF          0.226 0.130  1.731    2.925 0.011 0.793 -0.031   0.482 0.084
## DvR          -0.112 0.130 -0.859    0.720 0.003 0.915 -0.368   0.145 0.391
## CvG:FvNF      0.067 0.261  0.259    0.065 0.000 0.794 -0.446   0.580 0.796
## CvG:DvR       0.463 0.261  1.777    3.079 0.011 0.795 -0.050   0.976 0.077
## FvNF:DvR     -0.037 0.261 -0.142    0.020 0.000 0.810 -0.550   0.476 0.887
## CvG:FvNF:DvR -0.492 0.521 -0.944    0.869 0.003 0.796 -1.518   0.534 0.346
dNoI %>% ggplot(aes(condition, cooperative, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(5, 6.5))

4b. cooperation ~ grat x fear x dem_0

#looking at simple effects for republicans
mcSummary(cooperation<-lm(cooperative ~ CvG*FvNF*dem_0, data = dNoI))
## lm(formula = cooperative ~ CvG * FvNF * dem_0, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq    F     p
## Model       12.904   7 1.843 0.045 1.89 0.071
## Error      275.113 282 0.976                 
## Corr Total 288.017 289 0.997                 
## 
##   RMSE AdjEtaSq
##  0.988    0.021
## 
## Coefficients
##                   Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)     5.883 0.071 83.273 6765.086 0.961    NA  5.744   6.022 0.000
## CvG             0.043 0.141  0.304    0.090 0.000 0.674 -0.235   0.321 0.761
## FvNF            0.244 0.141  1.727    2.911 0.010 0.674 -0.034   0.522 0.085
## dem_0          -0.112 0.130 -0.859    0.720 0.003 0.915 -0.368   0.145 0.391
## CvG:FvNF        0.313 0.283  1.108    1.199 0.004 0.675 -0.243   0.870 0.269
## CvG:dem_0       0.463 0.261  1.777    3.079 0.011 0.627 -0.050   0.976 0.077
## FvNF:dem_0     -0.037 0.261 -0.142    0.020 0.000 0.634 -0.550   0.476 0.887
## CvG:FvNF:dem_0 -0.492 0.521 -0.944    0.869 0.003 0.629 -1.518   0.534 0.346

4c. cooperation ~ grat x fear x rep_0

#looking at simple effects for republicans
mcSummary(cooperation<-lm(cooperative ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = cooperative ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq    F     p
## Model       12.904   7 1.843 0.045 1.89 0.071
## Error      275.113 282 0.976                 
## Corr Total 288.017 289 0.997                 
## 
##   RMSE AdjEtaSq
##  0.988    0.021
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   5.827 0.065 89.457 7807.075 0.966    NA  5.699   5.956 0.000
## CvG           0.274 0.130  2.106    4.329 0.015 0.793  0.018   0.531 0.036
## FvNF          0.226 0.130  1.731    2.925 0.011 0.793 -0.031   0.482 0.084
## DvR          -0.112 0.130 -0.859    0.720 0.003 0.915 -0.368   0.145 0.391
## CvG:FvNF      0.067 0.261  0.259    0.065 0.000 0.794 -0.446   0.580 0.796
## CvG:DvR       0.463 0.261  1.777    3.079 0.011 0.795 -0.050   0.976 0.077
## FvNF:DvR     -0.037 0.261 -0.142    0.020 0.000 0.810 -0.550   0.476 0.887
## CvG:FvNF:DvR -0.492 0.521 -0.944    0.869 0.003 0.796 -1.518   0.534 0.346

6a. Opposition to immigration ~ grat X Fear X party

#looking at simple effects for democrats
mcSummary(OppositionToImm<-lm(OppositionToImm ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = OppositionToImm ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F p
## Model       62.357   7 8.908 0.159 7.592 0
## Error      330.888 282 1.173              
## Corr Total 393.245 289 1.361              
## 
##   RMSE AdjEtaSq
##  1.083    0.138
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   2.872 0.071 40.203 1896.440 0.851    NA  2.731   3.013 0.000
## CvG           0.010 0.143  0.071    0.006 0.000 0.793 -0.271   0.291 0.943
## FvNF         -0.228 0.143 -1.597    2.992 0.009 0.793 -0.509   0.053 0.111
## DvR           0.919 0.143  6.435   48.589 0.128 0.915  0.638   1.201 0.000
## CvG:FvNF      0.158 0.286  0.553    0.359 0.001 0.794 -0.404   0.721 0.581
## CvG:DvR       0.020 0.286  0.070    0.006 0.000 0.795 -0.542   0.583 0.944
## FvNF:DvR     -0.288 0.286 -1.007    1.190 0.004 0.810 -0.850   0.275 0.315
## CvG:FvNF:DvR -0.230 0.572 -0.403    0.190 0.001 0.796 -1.355   0.895 0.688
dNoI %>% ggplot(aes(condition, OppositionToImm, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(2, 4))

7a. opposition to eligibity for gov’t services

#looking at simple effects for democrats
mcSummary(OppositionToElig<-lm(OppositionToElig ~ CvG*FvNF*DvR, data = dNoI))
## lm(formula = OppositionToElig ~ CvG * FvNF * DvR, data = dNoI)
## 
## Omnibus ANOVA
##                 SS  df    MS EtaSq     F     p
## Model       30.946   7 4.421 0.087 3.857 0.001
## Error      323.223 282 1.146                  
## Corr Total 354.169 289 1.225                  
## 
##   RMSE AdjEtaSq
##  1.071    0.065
## 
## Coefficients
##                 Est StErr      t   SSR(3) EtaSq   tol CI_2.5 CI_97.5     p
## (Intercept)   2.320 0.071 32.854 1237.149 0.793    NA  2.181   2.459 0.000
## CvG          -0.127 0.141 -0.901    0.930 0.003 0.793 -0.405   0.151 0.368
## FvNF          0.075 0.141  0.528    0.319 0.001 0.793 -0.203   0.352 0.598
## DvR           0.653 0.141  4.622   24.490 0.070 0.915  0.375   0.931 0.000
## CvG:FvNF      0.274 0.282  0.969    1.077 0.003 0.794 -0.282   0.830 0.333
## CvG:DvR      -0.198 0.282 -0.701    0.563 0.002 0.795 -0.754   0.358 0.484
## FvNF:DvR     -0.234 0.282 -0.827    0.784 0.002 0.810 -0.790   0.322 0.409
## CvG:FvNF:DvR  0.024 0.565  0.043    0.002 0.000 0.796 -1.088   1.136 0.966
dNoI %>% ggplot(aes(condition, OppositionToElig, fill = party)) +
  stat_summary(fun.data = mean_sdl, geom = "bar", position = "dodge") + theme_minimal() + coord_cartesian(ylim = c(1, 4))

Gratitude as a predictor

1. hispanic threat ~ gratitude X party

summary(m1b<-lmer(hispThreatSCALE ~ gratSCALE*DvR + (1|region), data = dNoI))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: hispThreatSCALE ~ gratSCALE * DvR + (1 | region)
##    Data: dNoI
## 
## REML criterion at convergence: 791.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0973 -0.6691 -0.1507  0.5281  3.8334 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.02102  0.1450  
##  Residual             0.86102  0.9279  
## Number of obs: 290, groups:  region, 6
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     8.46967    0.44309 276.73730  19.115  < 2e-16 ***
## gratSCALE      -0.56310    0.06863 284.78356  -8.205 8.02e-15 ***
## DvR            -0.54175    0.88354 285.98225  -0.613    0.540    
## gratSCALE:DvR   0.30644    0.13788 285.95476   2.223    0.027 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) grSCALE DvR   
## gratSCALE   -0.981               
## DvR          0.289 -0.301        
## grtSCALE:DR -0.302  0.321  -0.991
p2 <- plot_model(m1b, type = "pred", terms = c("gratSCALE", "DvR"), legend.title = "condition")

p2 + labs(title = "hispThrear ~ gratitude X DvR",
          x = "gratitude score", 
          y = "hispanic threat score") + 
  scale_color_discrete(labels = c("dem", "rep")) + 
  theme_sjplot()
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

2. patient ~ grat X party

summary(m2<-lmer(patient ~ gratSCALE*DvR + (1|region), data = dNoI))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: patient ~ gratSCALE * DvR + (1 | region)
##    Data: dNoI
## 
## REML criterion at convergence: 868.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8811 -0.7655  0.1404  0.7738  2.1473 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.003066 0.05537 
##  Residual             1.140071 1.06774 
## Number of obs: 290, groups:  region, 6
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.46314    0.50393 281.92862   4.888 1.71e-06 ***
## gratSCALE       0.46266    0.07868 285.94964   5.880 1.14e-08 ***
## DvR             2.67332    1.00818 280.58658   2.652  0.00847 ** 
## gratSCALE:DvR  -0.42132    0.15754 283.30783  -2.674  0.00792 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) grSCALE DvR   
## gratSCALE   -0.990               
## DvR          0.292 -0.305        
## grtSCALE:DR -0.306  0.325  -0.991
p2 <- plot_model(m2, type = "pred", terms = c("gratSCALE", "DvR"), legend.title = "condition")

p2 + labs(title = "pateint ~ gratitude X DvR",
          x = "gratitude score", 
          y = "patience score") + 
  scale_color_discrete(labels = c("dem", "rep")) + 
  theme_sjplot()
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

3. oppToImm ~ grat X party

summary(m3<-lmer(OppositionToImm ~ gratSCALE*DvR + (1|region), data = dNoI))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OppositionToImm ~ gratSCALE * DvR + (1 | region)
##    Data: dNoI
## 
## REML criterion at convergence: 871.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4332 -0.4717 -0.1025  0.5629  2.4500 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.02134  0.1461  
##  Residual             1.14068  1.0680  
## Number of obs: 290, groups:  region, 6
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     3.86177    0.50865 277.59555   7.592 4.81e-13 ***
## gratSCALE      -0.15554    0.07894 284.90955  -1.970   0.0498 *  
## DvR             2.03010    1.01566 285.73984   1.999   0.0466 *  
## gratSCALE:DvR  -0.17667    0.15853 285.99406  -1.114   0.2660    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) grSCALE DvR   
## gratSCALE   -0.984               
## DvR          0.289 -0.301        
## grtSCALE:DR -0.303  0.322  -0.991
p2 <- plot_model(m3, type = "pred", terms = c("gratSCALE", "DvR"), legend.title = "condition")

p2 + labs(title = "opposition to immigration ~ gratitude X DvR",
          x = "gratitude score", 
          y = "opposition to immigration score") + 
  scale_color_discrete(labels = c("dem", "rep")) + 
  theme_sjplot()
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

4. opposition to eligibility for gov’t assistance ~ grat X party

summary(m4<-lmer(OppositionToElig ~ gratSCALE*DvR + (1|region), data = dNoI))
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OppositionToElig ~ gratSCALE * DvR + (1 | region)
##    Data: dNoI
## 
## REML criterion at convergence: 859.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.90509 -0.90411 -0.00463  0.89486  1.94897 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  region   (Intercept) 0.000    0.000   
##  Residual             1.106    1.051   
## Number of obs: 290, groups:  region, 6
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     3.86945    0.49522 286.00000   7.814 1.07e-13 ***
## gratSCALE      -0.24416    0.07741 286.00000  -3.154  0.00178 ** 
## DvR             2.32005    0.99044 286.00000   2.342  0.01984 *  
## gratSCALE:DvR  -0.27153    0.15483 286.00000  -1.754  0.08053 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) grSCALE DvR   
## gratSCALE   -0.991               
## DvR          0.293 -0.306        
## grtSCALE:DR -0.306  0.326  -0.991
## convergence code: 0
## boundary (singular) fit: see ?isSingular
p2 <- plot_model(m4, type = "pred", terms = c("gratSCALE", "DvR"), legend.title = "condition")

p2 + labs(title = "opposition to immigration ~ gratitude X DvR",
          x = "gratitude score", 
          y = "opp to elig for gov't assistance score") + 
  scale_color_discrete(labels = c("dem", "rep")) + 
  theme_sjplot()
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.