1 List of Mergers

files = paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/Ultimate Panel Data/",as.character(2000:2016),".fst")

panel = lapply(files, read_fst, as.data.table = TRUE,columns=c("respondentid","agencycode","reportername","asofdate","parentname","parentidentifier","reporterhomecity","reporterhomestate","rssd"))
panel <- do.call(rbind , panel)

panel[,asofdate:=as.integer(asofdate)]
panel <- panel[!duplicated(panel[,c("respondentid","agencycode","asofdate")])]
panel[,parentidentifier:=stri_trim(parentidentifier)]

panel[,rssd:=as.numeric(rssd)]

panel[,hmda_id:=paste0(agencycode,"-",respondentid)]

files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa"))
hmda <- do.call(rbind , hmda)
hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]


cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)
hmda[,c("agencycode","respondentid"):=list(NULL)]

gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2087349   111.5    3864205   206.4    2931641   156.6
## Vcells 2223677426 16965.4 6908862972 52710.5 7104834741 54205.6
mergers <- list()

temp <- list(1,"BANK ONE - JPMORGAN CHASE 2004",
             c("1-0000000008","1-0000007621","1-0000003106","1-0000011230","1-0000013655","1-0000013759","1-0000013914","1-0000014320","1-0000015184","1-0000018785","1-0000021969","1-0000023237","2-0000331647","3-0000002487"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2000,"JPMORGAN CHASE BANK, NA",2004)
mergers[[1]] <- temp

temp <- list(2,"COUNTRYWIDE - BANK OF AMERIC 2009" ,c("1-0000024141","2-0001644643","2-0003267484","7-20-2241771","1-0000024141","4-0000018039"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2009)
mergers[[2]] <- temp

temp <- list(3,"FLEET NA - BANK OF AMERICA 2005",c("1-0000000200"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[3]] <- temp

temp <- list(4,"WACHOVIA BK NA - WELLS FARGO 2010", c("1-0000000001","1-0000022559","1-56-0811711"), panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2009)
mergers[[4]] <- temp

temp <- list(5,"LASALLE BK - BANK OF AMERICA 2008",panel[substr(reportername,1,7)=="LASALLE" & asofdate<=2005]$hmda_id,c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[5]] <- temp


temp <- list(6,"ABN AMRO MTG GROUP - CITI BANK 2007",c("1-36-3744610"),unique(panel[parentidentifier=="0001951350"]$hmda_id),
             2004,"CITIMORTGAGE, INC.",2007)
mergers[[6]] <- temp

temp <- list(7,"UNION PLANTERS BANK - REGIONS FINANCIAL CORP 2004",
             c("1-0000013349"),
             c("9-0000233031","2-0000233031"),
             2002,c("REGIONS BANK"),2004)
mergers[[7]] <- temp

temp <- list(8,"AmSouth Bancorporation - REGIONS FINANCIAL CORP 2006",
             c("2-0000245333"),
             c("9-0000233031","2-0000233031"),
             2004,c("REGIONS BANK"),2006)
mergers[[8]] <- temp


temp <- list(9,"Washington Mutual - JPMORGAN CHASE 2008",
             c("4-0000008551","4-0000011905"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2005,"JPMORGAN CHASE BANK, NA",
             2008)
mergers[[9]] <- temp



## target operated in 5 msas; small share.
temp <- list(10,"Greater Bay Bank - Wells Fargo 2007",
             c("1-0000024489"),
             panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,c("WELLS FARGO BANK, N.A."),2007)
mergers[[10]] <- temp


temp <- list(11,"MBNA NA - BANK OF AMERICA 2005",c("1-0000024095"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[11]] <- temp

temp <- list(12,"Merrill Lynch - BANK OF AMERICA 2008",c("2-0000421203","7-13-3403204","3-13-3098068","3-13-3399559","3-0000027374","3-0000091363","3-13-3399559","4-0000014460","3-68-0518519","4-0000014460", "4-0133098068"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[12]] <- temp


temp <- list(13,"FIRST INTERSTATE BK CA  - Wells Fargo 1996",c("2-0000669667"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,1994,"WELLS FARGO BANK, N.A.",1996)
mergers[[13]] <- temp

temp <- list(14,"PACIFIC NORTHWEST  - Wells Fargo 2004",c("3-0000030887","3-0000027346"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2002,"WELLS FARGO BANK, N.A.",2004)
mergers[[14]] <- temp


temp <- list(15,"MERIDIAN MOME MORTGAGE, LP  - Wells Fargo 2010",c("1-74-3082948"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2010)
mergers[[15]] <- temp


temp <- list(16,"The Leader Mtg Co - US Bank 2004",
             c("7-3814209995"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2002,c("U.S. BANK N.A."),2004)
mergers[[16]] <- temp

temp <- list(17,"PFF BANK & TRUST  - US Bank 2008",
             c("4-0000001405"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[17]] <- temp


temp <- list(18,"DOWNEY SAVINGS AND LOAN ASSOCIATION, F.A.   - US Bank 2008",
             c("4-0000006189"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[18]] <- temp


cbsas <- unique(hmda$cbsa)
yrs <- 2000:2016
acqbanks <- NULL
for(i in 1:length(mergers)) {
  acqbanks <- c(acqbanks,mergers[[i]][6][[1]])
}
acqbanks <- c(unique(acqbanks),"other")

cbsas1 <- merge(cbsas,yrs)
cbsas2 <- merge(cbsas,acqbanks)

cbsas <- merge(cbsas1,cbsas2,by="x")
names(cbsas) <- c("cbsa","acyr","bank")
cbsas <- data.table(cbsas)

cbsas[,bank:=as.character(bank)]
cbsas[,acqbank:=0]
cbsas[,pred_share:=0]
cbsas[,suc_share:=0]

cbsa_bnk <- NULL
lender_bank <- NULL
sumtable <- NULL
for(i in 1:length(mergers)) {
  # print(i)
  mid=mergers[[i]][1][[1]]
  mname=mergers[[i]][2][[1]]
  pred_hmda_id=mergers[[i]][3][[1]]
  suc_hmda_id=mergers[[i]][4][[1]]
  yr=mergers[[i]][5][[1]]
  acname = mergers[[i]][6][[1]]
  acyr = mergers[[i]][7][[1]]

  temp <- hmda[asofdate == yr ]
  temp[,pred:=ifelse(lender %in% pred_hmda_id,1,0)]
  cw <- temp[,.(pred_share=mean(pred)),by=.(cbsa)]
  
  temp1 <- hmda[asofdate == (acyr-1) ]
  temp1[,suc:=ifelse(lender %in% suc_hmda_id,1,0)]
  cw1 <- temp1[,.(suc_share=mean(suc)),by=.(cbsa)]
  
  cw <- merge(cw,cw1,by="cbsa",all.x=T)
  cw <- cw[!is.na(cbsa)]
  cw[is.na(cw)] <- 0
  
  cw[,joint_share:=pred_share+suc_share]
  cw[,bank:=acname]
  cw[,acyr:=acyr]

  cw[,c("joint_share"):=list(NULL)]
  cbsa_bnk <- rbind(cbsa_bnk,cw)
}


cbsa_bnk[,acqbank:=1]


cbsa_bnk <- rbind(cbsa_bnk,cbsas)
cbsa_bnk <- cbsa_bnk[!duplicated(cbsa_bnk[,c("cbsa","acyr","bank")])]
cbsa_bnk <- cbsa_bnk[!is.na(cbsa)]


cbsa_bnk_1 <- cbsa_bnk[,c("cbsa","pred_share","bank","acyr")]

names(cbsa_bnk_1) <- c("cbsa","pred_share_1","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_2","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_3","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_4","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_5","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_6","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_7","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_8","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_9","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

cbsa_bnk[,pred_share_1:=ifelse(is.na(pred_share_1),0,pred_share_1)]
cbsa_bnk[,pred_share_2:=ifelse(is.na(pred_share_2),0,pred_share_2)]
cbsa_bnk[,pred_share_3:=ifelse(is.na(pred_share_3),0,pred_share_3)]
cbsa_bnk[,pred_share_4:=ifelse(is.na(pred_share_4),0,pred_share_4)]
cbsa_bnk[,pred_share_5:=ifelse(is.na(pred_share_5),0,pred_share_5)]
cbsa_bnk[,pred_share_6:=ifelse(is.na(pred_share_6),0,pred_share_6)]
cbsa_bnk[,pred_share_7:=ifelse(is.na(pred_share_7),0,pred_share_7)]
cbsa_bnk[,pred_share_8:=ifelse(is.na(pred_share_8),0,pred_share_8)]
cbsa_bnk[,pred_share_9:=ifelse(is.na(pred_share_9),0,pred_share_9)]

cbsa_bnk[,msinc13:=pred_share_1+pred_share_2+pred_share_3+0.00001]
cbsa_bnk[,msinc46:=pred_share_4+pred_share_5+pred_share_6+0.00001]
cbsa_bnk[,msinc79:=pred_share_7+pred_share_8+pred_share_9+0.00001]
 

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]


cbsa_bnk[,msinc79G:=ifelse(msinc79<=0.0001,"0. 0",
                           ifelse(msinc79<0.01,"1. Less than 1pct",
                           ifelse(msinc79<0.05,"2. 1 - 5pct",
                                  ifelse(msinc79<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

1.1 Moodys

moodys <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Moodys/0001/LoanChars.fst",as.data.table = TRUE, columns=c("loanid","loanoriginationdate","zipcode","originalloanbalance","originalcltv","state","originator","armflag","originalfico","originalterm","originalltv","documentationtype","originalinterestrate","purposetype","dti","assettype")) 

cbsa <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/ZIP_CBSA.csv")
cbsa[,ZIP:=ifelse(nchar(ZIP)==3,paste0("00",ZIP),ifelse(nchar(ZIP)==4,paste0("0",ZIP),paste0(ZIP)))]
setorder(cbsa,ZIP,-RES_RATIO)
cbsa <- cbsa[!duplicated(cbsa[,c("ZIP")])]
cbsa[,c("RES_RATIO","BUS_RATIO","OTH_RATIO","TOT_RATIO"):=list(NULL)]
names(cbsa) <- c("zipcode","msa")
moodys <- merge(moodys,cbsa,by=c("zipcode"))

# moodys <- moodys[originalterm==360 & armflag=="F"]
moodys[,loanyr:=as.numeric(substr(loanoriginationdate,1,4))]
moodys[,seller_name:= originator]
moodys[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A.","JP MORGAN CHASE BANK NA","CHASE MANHATTAN MORTGAGE CORP"),"JPMORGAN CHASE BANK, NA",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in%  c("B OF A"),"BANK OF AMERICA, N.A.",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A.","WELLS FARGO BANK N.A"," WELLS FARGO HOME MTG, INC"),"WELLS FARGO BANK, N.A.",seller_name)]

moodys[,int_rt:=originalinterestrate]
moodys[,dti:=0]
moodys[,ltv:=originalltv]
moodys[,fico:=originalfico]
moodys[,orig_upb:= originalloanbalance]

# moodys[,c("originalinterestrate","originalltv","originalfico","originalloanbalance","msacode","csacode","divcode","loanoriginationdate","armflag","originalterm"):=list(NULL)]

moodys[,fulldocumentation:=ifelse(documentationtype=="FU",1,0)]
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2152183   115.0    3864205   206.4    3058347   163.4
## Vcells 3032775321 23138.3 6908862972 52710.5 7104834741 54205.6
moodys[,bank:=seller_name]
moodys[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
moodys[,newpurchase:=ifelse(purposetype=="PUR",1,0)]
regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltv]

2 Interest Rate

2.1 By loan type

2.1.1 Linear

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype != "UN"])
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Prime"])  
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"])
r[[4]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"])  

  
.printtable(r,column.labels = c("All","Prime","Alt-A","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## =============================================================================
##                                           Dependent variable:                
##                           ---------------------------------------------------
##                               All         Prime        Alt-A       Subprime  
##                               (1)          (2)          (3)          (4)     
## -----------------------------------------------------------------------------
## msinc13                     6.797***      -1.570      9.817***    35.548***  
##                             (1.967)      (0.982)      (1.998)      (3.831)   
## fico                       -0.004***    -0.003***    -0.005***    -0.004***  
##                             (0.0001)     (0.0001)     (0.0001)     (0.0002)  
## ltv                        -0.012***    -0.007***    -0.013***    -0.013***  
##                             (0.001)      (0.001)      (0.001)      (0.001)   
## fulldocumentation          -0.227***    -0.184***    -0.376***    -0.395***  
##                             (0.010)      (0.009)      (0.015)      (0.013)   
## log(orig_upb)              -1.017***    -0.788***    -1.179***    -1.365***  
##                             (0.018)      (0.014)      (0.026)      (0.033)   
## newpurchase                 0.310***     0.229***     0.343***     0.390***  
##                             (0.032)      (0.024)      (0.037)      (0.044)   
## factor(assettype)Prime     -0.137***                                         
##                             (0.007)                                          
## factor(assettype)Subprime   0.216***                                         
##                             (0.015)                                          
## -----------------------------------------------------------------------------
## Fixed Effects             MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations               3,271,732    1,807,976     702,351      761,405   
## Adjusted R2                  0.517        0.586        0.549        0.404    
## =============================================================================
## Note:                                             *p<0.1; **p<0.05; ***p<0.01
## 

2.1.2 Market share bins

r <- list()
r[[1]] <- felm(int_rt~msinc13G+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype != "UN"])  
r[[2]] <- felm(int_rt~msinc13G+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Prime"])  
r[[3]] <- felm(int_rt~msinc13G+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"])
r[[4]] <- felm(int_rt~msinc13G+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"])  

  
.printtable(r,column.labels = c("All","Prime","Alt-A","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ==============================================================================
##                                            Dependent variable:                
##                            ---------------------------------------------------
##                                All         Prime        Alt-A       Subprime  
##                                (1)          (2)          (3)          (4)     
## ------------------------------------------------------------------------------
## msinc13G1. Less than 1pct   -0.151***    -0.265***     0.078**      1.193***  
##                              (0.021)      (0.016)      (0.037)      (0.146)   
## msinc13G2. 1 - 5pct          0.268***      0.029       0.262***     1.221***  
##                              (0.077)      (0.052)      (0.081)      (0.149)   
## msinc13G3. 5pct - 10pct      0.473***      0.020       0.654***     1.547***  
##                              (0.135)      (0.081)      (0.164)      (0.160)   
## msinc13G4. More than 10pct   1.902***                               2.493***  
##                              (0.441)      (0.000)      (0.000)      (0.021)   
## fico                        -0.004***    -0.003***    -0.005***    -0.004***  
##                              (0.0001)     (0.0001)     (0.0001)     (0.0002)  
## ltv                         -0.012***    -0.007***    -0.013***    -0.013***  
##                              (0.001)      (0.001)      (0.001)      (0.001)   
## fulldocumentation           -0.226***    -0.181***    -0.376***    -0.395***  
##                              (0.010)      (0.009)      (0.015)      (0.013)   
## log(orig_upb)               -1.017***    -0.788***    -1.179***    -1.365***  
##                              (0.018)      (0.015)      (0.026)      (0.033)   
## newpurchase                  0.310***     0.229***     0.343***     0.390***  
##                              (0.032)      (0.024)      (0.036)      (0.044)   
## factor(assettype)Prime      -0.137***                                         
##                              (0.007)                                          
## factor(assettype)Subprime    0.216***                                         
##                              (0.015)                                          
## ------------------------------------------------------------------------------
## Fixed Effects              MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations                3,271,732    1,807,976     702,351      761,405   
## Adjusted R2                   0.517        0.586        0.549        0.404    
## ==============================================================================
## Note:                                              *p<0.1; **p<0.05; ***p<0.01
## 

2.2 Impact of acq. bank share

r <- list()
r[[1]] <- felm(int_rt~msinc13*suc_share+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype != "UN"])
r[[2]] <- felm(int_rt~msinc13*suc_share+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Prime"])  
r[[3]] <- felm(int_rt~msinc13*suc_share+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"])
r[[4]] <- felm(int_rt~msinc13*suc_share+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"])  

  
.printtable(r,column.labels = c("All","Prime","Alt-A","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## =============================================================================
##                                           Dependent variable:                
##                           ---------------------------------------------------
##                               All         Prime        Alt-A       Subprime  
##                               (1)          (2)          (3)          (4)     
## -----------------------------------------------------------------------------
## msinc13                     5.143***    -3.197***     8.747***    34.641***  
##                             (1.893)      (0.953)      (1.929)      (3.774)   
## suc_share                  -3.184***    -2.927***    -2.753***    -2.069***  
##                             (0.186)      (0.201)      (0.284)      (0.338)   
## fico                       -0.004***    -0.003***    -0.005***    -0.004***  
##                             (0.0001)     (0.0001)     (0.0001)     (0.0002)  
## ltv                        -0.012***    -0.007***    -0.013***    -0.013***  
##                             (0.001)      (0.001)      (0.001)      (0.001)   
## fulldocumentation          -0.228***    -0.186***    -0.376***    -0.394***  
##                             (0.009)      (0.009)      (0.015)      (0.013)   
## log(orig_upb)              -1.018***    -0.789***    -1.180***    -1.366***  
##                             (0.018)      (0.015)      (0.026)      (0.033)   
## newpurchase                 0.310***     0.229***     0.341***     0.389***  
##                             (0.032)      (0.024)      (0.036)      (0.044)   
## factor(assettype)Prime     -0.137***                                         
##                             (0.007)                                          
## factor(assettype)Subprime   0.217***                                         
##                             (0.015)                                          
## msinc13:suc_share           -40.841       4.004       -545.778    810.319*** 
##                            (141.847)     (92.353)    (516.526)    (223.315)  
## -----------------------------------------------------------------------------
## Fixed Effects             MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations               3,271,732    1,807,976     702,351      761,405   
## Adjusted R2                  0.518        0.586        0.549        0.404    
## =============================================================================
## Note:                                             *p<0.1; **p<0.05; ***p<0.01
## 

2.3 By documentation

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & documentationtype %in% c("FU") & assettype %in% c("Alt-A","Subprime")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)+factor(documentationtype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & documentationtype %in% c("LO","NO") & assettype %in% c("Alt-A","Subprime")])

  
.printtable(r,column.labels = c("Full-Doc","Low/No-Doc"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ========================================================
##                                 Dependent variable:     
##                             ----------------------------
##                                Full-Doc     Low/No-Doc  
##                                  (1)            (2)     
## --------------------------------------------------------
## msinc13                       34.064***      20.137***  
##                                (2.821)        (3.571)   
## fico                          -0.004***      -0.003***  
##                                (0.0002)      (0.0002)   
## ltv                           -0.015***      -0.016***  
##                                (0.001)        (0.002)   
## fulldocumentation                                       
##                                (0.000)        (0.000)   
## log(orig_upb)                 -1.243***      -1.120***  
##                                (0.027)        (0.041)   
## newpurchase                    0.398***      0.485***   
##                                (0.037)        (0.048)   
## factor(assettype)Subprime      0.243***      0.293***   
##                                (0.011)        (0.016)   
## factor(documentationtype)NO                  0.444***   
##                                               (0.014)   
## --------------------------------------------------------
## Fixed Effects                MSA*Bank, Yr  MSA*Bank, Yr 
## Observations                   673,518        399,704   
## Adjusted R2                     0.406          0.478    
## ========================================================
## Note:                        *p<0.1; **p<0.05; ***p<0.01
## 

2.4 By FICO Score

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & fico<620 & assettype %in% c("Alt-A","Subprime")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & fico>=620 & assettype %in% c("Alt-A","Subprime")])

  
.printtable(r,column.labels = c("FICO<620","FICO>=620"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ======================================================
##                               Dependent variable:     
##                           ----------------------------
##                              FICO<620      FICO>=620  
##                                (1)            (2)     
## ------------------------------------------------------
## msinc13                     39.422***      11.111***  
##                              (4.023)        (2.148)   
## fico                        -0.002***      -0.006***  
##                              (0.0003)      (0.0001)   
## ltv                         -0.013***      -0.014***  
##                              (0.001)        (0.001)   
## fulldocumentation           -0.401***      -0.348***  
##                              (0.014)        (0.015)   
## log(orig_upb)               -1.429***      -1.179***  
##                              (0.032)        (0.029)   
## newpurchase                  0.324***      0.380***   
##                              (0.044)        (0.036)   
## factor(assettype)Subprime    0.724***      0.270***   
##                              (0.027)        (0.016)   
## ------------------------------------------------------
## Fixed Effects              MSA*Bank, Yr  MSA*Bank, Yr 
## Observations                 611,157        852,599   
## Adjusted R2                   0.380          0.555    
## ======================================================
## Note:                      *p<0.1; **p<0.05; ***p<0.01
## 

3 loan amount

3.1 By loan type

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype != "UN"])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Prime"])  
r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"])
r[[4]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"])  

  
.printtable(r,column.labels = c("All","Prime","Alt-A","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## =============================================================================
##                                           Dependent variable:                
##                           ---------------------------------------------------
##                               All         Prime        Alt-A       Subprime  
##                               (1)          (2)          (3)          (4)     
## -----------------------------------------------------------------------------
## msinc13                     2.628***     1.849***     6.849***      0.182    
##                             (0.525)      (0.590)      (0.686)      (0.425)   
## fico                       0.0004***    0.0003***    0.0003***    0.0002***  
##                            (0.00002)    (0.00003)    (0.00005)     (0.0001)  
## fulldocumentation           0.037***     0.055***     0.084***    -0.056***  
##                             (0.003)      (0.002)      (0.004)      (0.004)   
## log(homevalue)              0.838***     0.859***     0.804***     0.763***  
##                             (0.005)      (0.006)      (0.006)      (0.008)   
## newpurchase                -0.086***     0.026***    -0.177***    -0.281***  
##                             (0.010)      (0.009)      (0.008)      (0.011)   
## factor(assettype)Prime      0.083***                                         
##                             (0.004)                                          
## factor(assettype)Subprime   0.049***                                         
##                             (0.004)                                          
## -----------------------------------------------------------------------------
## Fixed Effects             MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations               3,272,969    1,808,312     702,637      762,020   
## Adjusted R2                  0.748        0.797        0.666        0.619    
## =============================================================================
## Note:                                             *p<0.1; **p<0.05; ***p<0.01
## 

3.2 By documentation

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & documentationtype %in% c("FU") & assettype %in% c("Alt-A","Subprime")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)+factor(documentationtype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & documentationtype %in% c("LO","NO") & assettype %in% c("Alt-A","Subprime")])

  
.printtable(r,column.labels = c("Full-Doc","Low/No-Doc"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ========================================================
##                                 Dependent variable:     
##                             ----------------------------
##                                Full-Doc     Low/No-Doc  
##                                  (1)            (2)     
## --------------------------------------------------------
## msinc13                        2.463***      3.655***   
##                                (0.426)        (0.631)   
## fico                          -0.001***     -0.0002***  
##                                (0.0001)      (0.0001)   
## fulldocumentation                                       
##                                (0.000)        (0.000)   
## log(homevalue)                 0.857***      0.830***   
##                                (0.004)        (0.008)   
## newpurchase                   -0.268***      -0.143***  
##                                (0.009)        (0.008)   
## factor(assettype)Subprime     -0.100***      0.057***   
##                                (0.003)        (0.005)   
## factor(documentationtype)NO                  -0.136***  
##                                               (0.015)   
## --------------------------------------------------------
## Fixed Effects                MSA*Bank, Yr  MSA*Bank, Yr 
## Observations                   673,565        399,728   
## Adjusted R2                     0.650          0.650    
## ========================================================
## Note:                        *p<0.1; **p<0.05; ***p<0.01
## 

3.3 By FICO Score

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & fico<620 & assettype %in% c("Alt-A","Subprime")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & fico>=620 & assettype %in% c("Alt-A","Subprime")])

  
.printtable(r,column.labels = c("FICO<620","FICO>=620"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ======================================================
##                               Dependent variable:     
##                           ----------------------------
##                              FICO<620      FICO>=620  
##                                (1)            (2)     
## ------------------------------------------------------
## msinc13                       -0.280       6.236***   
##                              (0.478)        (0.607)   
## fico                        -0.001***      0.001***   
##                              (0.0001)      (0.00005)  
## fulldocumentation           -0.019***      0.046***   
##                              (0.005)        (0.003)   
## log(homevalue)               0.770***      0.795***   
##                              (0.009)        (0.006)   
## newpurchase                 -0.273***      -0.202***  
##                              (0.011)        (0.009)   
## factor(assettype)Subprime   -0.069***      0.085***   
##                              (0.008)        (0.005)   
## ------------------------------------------------------
## Fixed Effects              MSA*Bank, Yr  MSA*Bank, Yr 
## Observations                 611,700        852,957   
## Adjusted R2                   0.638          0.647    
## ======================================================
## Note:                      *p<0.1; **p<0.05; ***p<0.01
##