pkg <- c("Rmisc", "ggplot2", "knitr","reshape2", "dplyr")
sapply(pkg, library, character.only=TRUE, logical.return=TRUE)
##    Rmisc  ggplot2    knitr reshape2    dplyr 
##     TRUE     TRUE     TRUE     TRUE     TRUE
setwd("/home/epi/Dropbox/MyR/Análise otros/ISA/tese")# lab
#setwd("/media/DATA/Dropbox/MyR/Análise otros/ISA/tese") # DELL

Dataset Coeficientes angulares

# Dados planilha laboratorio
dat1 = read.csv("est_taxa.csv", dec=",", header=T, sep="\t", check.names=FALSE)  
head(dat1)
##       iso transf exp  coef_mic
## 1 SP09839      0   1 0.5580000
## 2 PR09638      0   1 0.8958571
## 3 SP08345      0   1 0.4581429
## 4 SP09839      1   1 0.5728571
## 5 PR09638      1   1 1.1139286
## 6 SP08345      1   1 0.4128571

Ajustes lineales

m.PR09638 <- lm(coef_mic ~ transf, data = dat1, subset = iso == "PR09638") 
summary(m.PR09638)
## 
## Call:
## lm(formula = coef_mic ~ transf, data = dat1, subset = iso == 
##     "PR09638")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.155668 -0.024033  0.006065  0.050914  0.110596 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.038447   0.028781  36.081   <2e-16 ***
## transf      0.004707   0.004865   0.968    0.345    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07216 on 20 degrees of freedom
## Multiple R-squared:  0.04471,    Adjusted R-squared:  -0.003051 
## F-statistic: 0.9361 on 1 and 20 DF,  p-value: 0.3448
m.SP08345 <- lm(coef_mic ~ transf, data = dat1, subset = iso == "SP08345") 
summary(m.SP08345)
## 
## Call:
## lm(formula = coef_mic ~ transf, data = dat1, subset = iso == 
##     "SP08345")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.128136 -0.035238 -0.007431  0.020897  0.270076 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.437878   0.031921  13.718 1.24e-11 ***
## transf      0.007747   0.005396   1.436    0.167    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08003 on 20 degrees of freedom
## Multiple R-squared:  0.09344,    Adjusted R-squared:  0.04811 
## F-statistic: 2.061 on 1 and 20 DF,  p-value: 0.1665
m.SP09839 <- lm(coef_mic ~ transf, data = dat1, subset = iso == "SP09839") 
summary(m.SP09839)
## 
## Call:
## lm(formula = coef_mic ~ transf, data = dat1, subset = iso == 
##     "SP09839")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.07822 -0.04448 -0.01990  0.03521  0.15522 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.5679562  0.0262733  21.617 2.44e-15 ***
## transf      -0.0004196  0.0044410  -0.094    0.926    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06587 on 20 degrees of freedom
## Multiple R-squared:  0.0004462,  Adjusted R-squared:  -0.04953 
## F-statistic: 0.008929 on 1 and 20 DF,  p-value: 0.9257
lmplot1 = ggplot(dat1, aes(x=transf, y=coef_mic)) + geom_point(size=1) +
  facet_wrap(~iso, ncol=3, scales="fixed") +
  scale_x_discrete("Transferências") +  coord_cartesian(xlim=c(-1, 11)) + 
  scale_y_continuous("Taxa de crescimento micelial (cm/dia)")+
  theme_bw(base_size = 12, base_family = "Helvetica")+
  scale_shape_discrete(name  ="Isolados")
 
lmplot1 + geom_smooth(method=lm,   # Add linear regression lines
                se=TRUE,    # Don't add shaded confidence region
                fullrange=T, colour="black")

Dataset avaliações

dat = read.csv("estab_aval.csv", dec=",", header=T, sep="\t", check.names=FALSE, na.strings=".")  
head(dat)
##       iso rep exp aval     germ    espor diam_f
## 1 PR09638   1   1    1 38.00000 4.583333      0
## 2 PR09638   2   1    1 40.35294 5.000000      0
## 3 PR09638   3   1    1 22.66667 3.333333      0
## 4 PR09638   4   1    1 35.66667 2.500000      0
## 5 PR09638   5   1    1 43.66667 5.791667      0
## 6 PR09638   6   1    1 72.66667 1.750000      0
long <- melt(dat, id.vars = c("iso", "rep", "exp", "aval"))
names(long)[5:6] = c("x","y") 
long = long[complete.cases(long),]
str(long)
## 'data.frame':    695 obs. of  6 variables:
##  $ iso : Factor w/ 3 levels "PR09638","SP08345",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ rep : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ exp : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ aval: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ x   : Factor w/ 3 levels "germ","espor",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ y   : num  38 40.4 22.7 35.7 43.7 ...

Tabela resumo

datsum <- summarySEwithin(long, measurevar="y", withinvars=c("iso","aval", "x"),
                        idvar="rep", na.rm=FALSE, conf.interval=.95)
## Automatically converting the following non-factors to factors: aval
datsum = arrange(datsum, x, iso, aval)
(datsum = select(datsum, variable=x, Isolado=iso, Avaliação=aval, N, media=y, se))
##    variable Isolado Avaliação  N      media        se
## 1      germ PR09638         1 20 46.3848046 5.9677291
## 2      germ PR09638         2 16 58.5841380 7.6579821
## 3      germ PR09638         3  8 67.2486928 5.8708114
## 4      germ PR09638         4 18 51.8741987 4.8672581
## 5      germ SP08345         1 19 65.9784883 5.2300070
## 6      germ SP08345         2 18 59.6212817 5.5022921
## 7      germ SP08345         3 20 69.6508188 4.3145294
## 8      germ SP08345         4 20 53.7977400 3.4207721
## 9      germ SP09839         1 18 58.5784456 5.1117636
## 10     germ SP09839         2 18 70.8487693 3.1605768
## 11     germ SP09839         3 20 76.0796736 2.5365893
## 12     germ SP09839         4 20 45.2237742 3.5822867
## 13    espor PR09638         1 20  4.0189576 0.6463480
## 14    espor PR09638         2 20  1.9338242 0.4827133
## 15    espor PR09638         3 20  0.6129909 0.4880280
## 16    espor PR09638         4 20  1.2379992 0.4697685
## 17    espor SP08345         1 20  2.6582409 0.5215256
## 18    espor SP08345         2 20  1.8508242 0.5146123
## 19    espor SP08345         3 20  1.0025742 0.4481911
## 20    espor SP08345         4 20  2.6900742 0.6108465
## 21    espor SP09839         1 20  2.5161576 0.4953396
## 22    espor SP09839         2 20  1.1171576 0.4577722
## 23    espor SP09839         3 20  1.1713242 0.4470210
## 24    espor SP09839         4 20  2.8171576 0.7268282
## 25   diam_f PR09638         1 20  0.3596576 0.4140440
## 26   diam_f PR09638         2 20  0.5621576 0.4254129
## 27   diam_f PR09638         3 20  0.2671576 0.4149046
## 28   diam_f PR09638         4 20  0.5421576 0.4149544
## 29   diam_f SP08345         1 20  1.3821576 0.4158764
## 30   diam_f SP08345         2 20  1.3896576 0.4129715
## 31   diam_f SP08345         3 20  1.0746576 0.4329701
## 32   diam_f SP08345         4 20  1.2471576 0.4259255
## 33   diam_f SP09839         1 20  0.8796576 0.4317676
## 34   diam_f SP09839         2 20  1.4171576 0.4210205
## 35   diam_f SP09839         3 20  1.1646576 0.4327277
## 36   diam_f SP09839         4 20  1.2021576 0.4105370

GERMINAÇÃO

head(dat)
##       iso rep exp aval     germ    espor diam_f
## 1 PR09638   1   1    1 38.00000 4.583333      0
## 2 PR09638   2   1    1 40.35294 5.000000      0
## 3 PR09638   3   1    1 22.66667 3.333333      0
## 4 PR09638   4   1    1 35.66667 2.500000      0
## 5 PR09638   5   1    1 43.66667 5.791667      0
## 6 PR09638   6   1    1 72.66667 1.750000      0
germi = select(dat, iso, rep, exp, aval, germ)
germi = germi[complete.cases(germi),]
germi = filter(germi, germ > 0)
germi$germ = (germi$germ/100) + 0.005
germi$logit= log((germi$germ))- log(1-(germi$germ)) 

head(germi) ; levels(germi$iso)
##       iso rep exp aval      germ      logit
## 1 PR09638   1   1    1 0.3850000 -0.4683789
## 2 PR09638   2   1    1 0.4085294 -0.3700480
## 3 PR09638   3   1    1 0.2316667 -1.1989241
## 4 PR09638   4   1    1 0.3616667 -0.5681376
## 5 PR09638   5   1    1 0.4416667 -0.2344007
## 6 PR09638   6   1    1 0.7316667  1.0030950
## [1] "PR09638" "SP08345" "SP09839"
mod.PR09 = lm (logit  ~ exp + aval, data=germi, subset = iso == "PR09638")
anova(mod.PR09)
## Analysis of Variance Table
## 
## Response: logit
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## exp        1  8.828  8.8276  7.9314 0.006697 **
## aval       1  0.044  0.0445  0.0400 0.842275   
## Residuals 56 62.327  1.1130                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2,2)); plot(mod.PR09)

mod.SP08 = lm (logit  ~ exp + aval, data=germi, subset = iso == "SP08345")
anova(mod.SP08)
## Analysis of Variance Table
## 
## Response: logit
##           Df Sum Sq Mean Sq F value Pr(>F)
## exp        1  0.156 0.15569  0.1329 0.7165
## aval       1  2.920 2.91963  2.4914 0.1187
## Residuals 74 86.718 1.17187
par(mfrow=c(2,2)); plot(mod.SP08)

mod.SP09 = lm (logit  ~ exp + aval, data=germi, subset = iso == "SP09839")
anova(mod.SP09)
## Analysis of Variance Table
## 
## Response: logit
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## exp        1  1.790 1.78966  3.0254 0.08631 .
## aval       1  2.691 2.69105  4.5491 0.03639 *
## Residuals 71 42.000 0.59155                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2,2)); plot(mod.SP09)

(ggplot(germi, aes(x=aval, y=germ)) + geom_point(size=2) +
  facet_grid(exp~iso) +
  scale_x_discrete("Avaliações") +  
  scale_y_continuous("Conidios esporulados (%)")+
  theme_bw(base_size = 12, base_family = "Helvetica")
  + geom_smooth(method=lm,   # Add linear regression lines
                se=TRUE,    # Don't add shaded confidence region
                fullrange=T, colour="black") 
 )

ESPORULAÇÃO » T-test: aval1 vs aval4

date = select(dat, iso, exp, aval, espor)
#date = filter(date, espor>0)
date = date[complete.cases(date),]

(ggplot(date, aes(x=aval, y=espor)) + geom_point(size=2) +
  #facet_wrap(exp~iso, ncol=3, scales="free") +
  facet_grid(exp~iso) +
  scale_x_discrete("Avaliações") +  
  scale_y_continuous("Esporos")+
  theme_bw(base_size = 12, base_family = "Helvetica")
 + geom_smooth(method=lm,   # Add linear regression lines
                se=TRUE,    # Don't add shaded confidence region
                fullrange=T, colour="black") 
 )

pr09_1_1 = filter(date, iso=="PR09638", aval=="1", exp =="1")
pr09_1_4 = filter(date, iso=="PR09638", aval=="4", exp =="1")
t.test(pr09_1_1$espor,pr09_1_4$espor) # where y1 and y2 are numeric 
## 
##  Welch Two Sample t-test
## 
## data:  pr09_1_1$espor and pr09_1_4$espor
## t = 3.4375, df = 17.444, p-value = 0.003047
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.7793482 3.2439518
## sample estimates:
## mean of x mean of y 
##   3.24500   1.23335
pr09_2_1 = filter(date, iso=="PR09638", aval=="1", exp =="2")
pr09_2_4 = filter(date, iso=="PR09638", aval=="4", exp =="2")
t.test(pr09_2_1$espor,pr09_2_4$espor) # where y1 and y2 are numeric 
## 
##  Welch Two Sample t-test
## 
## data:  pr09_2_1$espor and pr09_2_4$espor
## t = 5.1032, df = 17.565, p-value = 7.999e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.086067 5.014466
## sample estimates:
## mean of x mean of y 
##  4.758600  1.208333
sp08_1_1 = filter(date, iso=="SP08345", aval=="1", exp =="1")
sp08_1_4 = filter(date, iso=="SP08345", aval=="4", exp =="1")
t.test(sp08_1_1$espor,sp08_1_4$espor) 
## 
##  Welch Two Sample t-test
## 
## data:  sp08_1_1$espor and sp08_1_4$espor
## t = -1.8977, df = 16.703, p-value = 0.07516
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.993799  0.160466
## sample estimates:
## mean of x mean of y 
##  2.050000  3.466667
sp08_2_1 = filter(date, iso=="SP08345", aval=="1", exp =="2")
sp08_2_4 = filter(date, iso=="SP08345", aval=="4", exp =="2")
t.test(sp08_2_1$espor,sp08_2_4$espor) 
## 
##  Welch Two Sample t-test
## 
## data:  sp08_2_1$espor and sp08_2_4$espor
## t = 2.2993, df = 16.212, p-value = 0.0351
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1068789 2.5991211
## sample estimates:
## mean of x mean of y 
##  3.232167  1.879167
sp09_1_1 = filter(date, iso=="SP09839", aval=="1", exp =="1")
sp09_1_4 = filter(date, iso=="SP09839", aval=="4", exp =="1")
t.test(sp09_1_1$espor,sp09_1_4$espor) 
## 
##  Welch Two Sample t-test
## 
## data:  sp09_1_1$espor and sp09_1_4$espor
## t = -1.004, df = 14.14, p-value = 0.3322
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.378180  1.222514
## sample estimates:
## mean of x mean of y 
##  2.959667  4.037500
sp09_2_1 = filter(dat, iso=="SP09839", aval=="1", exp =="2")
sp09_2_4 = filter(dat, iso=="SP09839", aval=="4", exp =="2")
t.test(sp09_2_1$espor,sp09_2_4$espor) 
## 
##  Welch Two Sample t-test
## 
## data:  sp09_2_1$espor and sp09_2_4$espor
## t = 0.9933, df = 15.385, p-value = 0.3359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5429992  1.4946659
## sample estimates:
## mean of x mean of y 
##  2.038333  1.562500

DIAMETRO EM MEIO COM FUNGICDA » T-test: aval1 vs aval4

datd = select(dat, iso, exp, aval, diam_f)
datd = datd[complete.cases(datd),]

(ggplot(datd, aes(x=aval, y=diam_f)) + geom_point(size=2) +
  #facet_wrap(exp~iso, ncol=3, scales="free") +
  facet_grid(exp~iso) +
  scale_x_discrete("Avaliações") +  
  scale_y_continuous("Diâmetro da colônia")+
  theme_bw(base_size = 12, base_family = "Helvetica")
 + geom_smooth(method=lm,   # Add linear regression lines
                se=TRUE,    # Don't add shaded confidence region
                fullrange=T, colour="black") 
 )

pr09_1_1 = filter(datd, iso=="PR09638", aval=="1", exp =="1")
pr09_1_4 = filter(datd, iso=="PR09638", aval=="4", exp =="1")
t.test(pr09_1_1$diam_f,pr09_1_4$diam_f) # where y1 and y2 are numeric 
## 
##  Welch Two Sample t-test
## 
## data:  pr09_1_1$diam_f and pr09_1_4$diam_f
## t = -3.9696, df = 11.179, p-value = 0.00213
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6524188 -0.1875812
## sample estimates:
## mean of x mean of y 
##     0.035     0.455
pr09_2_1 = filter(datd, iso=="PR09638", aval=="1", exp =="2")
pr09_2_4 = filter(datd, iso=="PR09638", aval=="4", exp =="2")
t.test(pr09_2_1$diam_f,pr09_2_4$diam_f) # where y1 and y2 are numeric 
## 
##  Welch Two Sample t-test
## 
## data:  pr09_2_1$diam_f and pr09_2_4$diam_f
## t = 0.7759, df = 17.802, p-value = 0.448
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.09404765  0.20404765
## sample estimates:
## mean of x mean of y 
##     0.650     0.595
sp08_1_1 = filter(datd, iso=="SP08345", aval=="1", exp =="1")
sp08_1_4 = filter(datd, iso=="SP08345", aval=="4", exp =="1")
t.test(sp08_1_1$diam_f,sp08_1_4$diam_f) 
## 
##  Welch Two Sample t-test
## 
## data:  sp08_1_1$diam_f and sp08_1_4$diam_f
## t = -4.2612, df = 17.145, p-value = 0.0005183
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5007598 -0.1692402
## sample estimates:
## mean of x mean of y 
##     1.035     1.370
sp08_2_1 = filter(datd, iso=="SP08345", aval=="1", exp =="2")
sp08_2_4 = filter(datd, iso=="SP08345", aval=="4", exp =="2")
t.test(sp08_2_1$diam_f,sp08_2_4$diam_f) 
## 
##  Welch Two Sample t-test
## 
## data:  sp08_2_1$diam_f and sp08_2_4$diam_f
## t = 7.7657, df = 16.765, p-value = 5.984e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.4404558 0.7695442
## sample estimates:
## mean of x mean of y 
##     1.695     1.090
sp09_1_1 = filter(datd, iso=="SP09839", aval=="1", exp =="1")
sp09_1_4 = filter(datd, iso=="SP09839", aval=="4", exp =="1")
t.test(sp09_1_1$diam_f,sp09_1_4$diam_f) 
## 
##  Welch Two Sample t-test
## 
## data:  sp09_1_1$diam_f and sp09_1_4$diam_f
## t = -10.0873, df = 15.133, p-value = 4.107e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.12636 -0.73364
## sample estimates:
## mean of x mean of y 
##      0.44      1.37
sp09_2_1 = filter(dat, iso=="SP09839", aval=="1", exp =="2")
sp09_2_4 = filter(dat, iso=="SP09839", aval=="4", exp =="2")
t.test(sp09_2_1$diam_f,sp09_2_4$diam_f) 
## 
##  Welch Two Sample t-test
## 
## data:  sp09_2_1$diam_f and sp09_2_4$diam_f
## t = 2.3757, df = 14.332, p-value = 0.03197
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.02825831 0.54174169
## sample estimates:
## mean of x mean of y 
##     1.285     1.000