Datos de temperatura y humedad relativa

Graficos estandarizados y sin estandarizar

Datos_temp <- read.delim("~/Nacional/7.computacion/Tareas/Tarea2/Acacias_Meta_2011_2019_JOINT.txt")

Temp<-Datos_temp$Tmed
Hume<-Datos_temp$RHUM



estandarizar <- function(x){
media = mean(x)
desv = sd(x)
z = (x - media)/desv
return(z)
}

Temp_z <- estandarizar(Temp)
Hume_z <- estandarizar(Hume)



par(mfrow = c(1,2))
plot(Temp, Hume, main = 'Sin estandarizar')
points(x=mean(Temp), y=mean(Hume), col = 'red', pch=20)
plot(Temp_z, Hume_z, main = 'Estandarizado')
points(x=mean(Temp_z), y=mean(Hume_z), col = 'blue', pch=20)

linea <- lm(Hume~Temp)
linea2 <- lm(Hume_z~Temp_z)
par(mfrow = c(1,2))
plot(Temp, Hume, main = 'Sin estandarizar', xlim = c(0,100), ylim = c(0,100))
abline(linea)
points(x=mean(Temp), y=mean(Hume), col = 'red', pch=20)
plot(Temp_z, Hume_z, main = 'Estandarizado', xlim = c(-4,3), ylim = c(-4,3))
abline(linea2)
points(x=mean(Temp_z), y=mean(Hume_z), col = 'blue', pch=20)

linea <- lm(Hume~Temp)
linea2 <- lm(Hume_z~Temp_z)

par(mfrow = c(2,2))
plot(Temp, Hume, main = 'Sin estandarizar')
points(x=mean(Temp), y=mean(Hume), col = 'red', pch=20)
plot(Temp_z, Hume_z, main = 'Estandarizado')
points(x=mean(Temp_z), y=mean(Hume_z), col = 'blue', pch=20)
plot(Temp, Hume, main = 'Sin estandarizar', xlim = c(0,100), ylim = c(0,100))
abline(linea)
points(x=mean(Temp), y=mean(Hume), col = 'red', pch=20)
plot(Temp_z, Hume_z, main = 'Estandarizado', xlim = c(-4,3), ylim = c(-4,3))
abline(linea2)
points(x=mean(Temp_z), y=mean(Hume_z), col = 'blue', pch=20)

pearson <- cor(Temp, Hume, method = 'pearson')
spearman <-cor(Temp, Hume, method = 'spearman')
pearson
## [1] -0.6034923
spearman
## [1] -0.6447906
pearson_z <- cor(Temp_z, Hume_z, method = 'pearson')
spearman_z <-cor(Temp_z, Hume_z, method = 'spearman')
pearson_z
## [1] -0.6034923
spearman_z
## [1] -0.6447906

Modelos de crecimiento

Brody

library(growthmodels)
growth <- brody(0:100, 10, 5, 0.3)


par(bg = 'lightblue', fg = 'darkblue', lwd=2)
plot(growth, main = 'Brody', col.main= 'darkblue', type = 'l', col = 'red', lwd = 2)
grid(nx = 10, ny = 10, lwd = 1,col = 'black')

### chapmanRichards

growth2 <- chapmanRichards(0:100, 10, 0.5, 0.3, 0.5)

par(bg = rgb(0.8, 0.6, 0.8), fg = rgb(0.8,0,0), lwd = 2)
plot(growth2, main = 'chapmanRichards', pch=15, col = 'purple')
grid(10,10, 5)

GeneralisedRichards

growth3 <- generalisedRichard(0:100, 5, 10, 0.3, 0.5, 1, 3)
plot(growth3, main = 'GeneralisedRichards', pch=18, col = 'grey')
grid(10, 10, col = rgb(0.1, 0.1, 0.5))

gompertz

growth4 <- gompertz(0:100, 10, 0.5, 0.3)
par(bg = rgb(0.2,0.4,0.4))
plot(growth4, main = 'gompertz', col.main= 'aquamarine', pch=16, col = 'aquamarine')
grid(10, 10, col=rgb(0.8,0.8,0.7))

logistic

growth5 <- logistic(0:100, 10, 0.5, 0.3)
plot(growth5)

Loglogistic

growth6 <- logistic(0:100, 10, 0.5, 0.3)
plot(growth6)

mononuclear

growth_m <- monomolecular(0:100, 10, 0.5, 0.3)
plot(growth_m)

Ejercicios

Ejercicio1

Datos

L1 = c(62,50,46,44,43,41,43,45,41,36,41,42,48,51,60,68,71,61,56,55,66,72,65,70,69,59,56,54,59,67,61)
L2 = c(39,40,37,37,37,40,42,47,43,45,44,45,55,46,41,44,48,49,45,40,38,41,41,39,42,42,47,46,43,43,41)

1. Función de Tmed

Media <- function(x){
  suma <- sum(x)
  n <- length(x)
  M <- suma/n
  return(M)
  
}
Media(L1)
## [1] 54.90323
Media(L2)
## [1] 42.80645

2. Función número de T Menores que la media

Menores <- function(x){
  a <- x<mean(x)
  b <- x[a]
  c <- length(b)
  return(c)
}
Menores(L1)
## [1] 14
Menores(L2)
## [1] 16

3. Función de cuántos días la T de L1 fue mayor que la T de L2

x_mayores_y <- function(x,y){
  may <- x>y
  cual <- x[may]
  cuan <- length(cual)
  dias <- which(may)
  print('Cuantos'); print(cuan); print('Cuales'); print(dias)
  
}
  
x_mayores_y(L1,L2)
## [1] "Cuantos"
## [1] 25
## [1] "Cuales"
##  [1]  1  2  3  4  5  6  7 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4. Función que muestra el qué día ocurrio la máxima diferencia de T

mx_dif <- function(x,y){
  dif <- x-y
  mx <- max(dif)
  dia <- dif == mx
  qdia <- which(dia)
  return(qdia)
}

mx_dif(L1, L2)
## [1] 22 24

Función cuántos días la diferencia de T fue de al menos 3°F

mn_3 <- function(x, y){
  difer <- x-y
  almenos_3 <- difer >= 3
  cual <- difer[almenos_3]
  num <- length(cual)
  return(num)
}
  
mn_3(L1, L2)
## [1] 23

Conversión de °F a °C

Fh_C <- function(x){
  C <- (x-32)*5/9
  return(C)
}
L1_2 <- Fh_C(L1)
L2_2 <- Fh_C(L2)

L1_2
##  [1] 16.666667 10.000000  7.777778  6.666667  6.111111  5.000000  6.111111
##  [8]  7.222222  5.000000  2.222222  5.000000  5.555556  8.888889 10.555556
## [15] 15.555556 20.000000 21.666667 16.111111 13.333333 12.777778 18.888889
## [22] 22.222222 18.333333 21.111111 20.555556 15.000000 13.333333 12.222222
## [29] 15.000000 19.444444 16.111111
L2_2
##  [1]  3.888889  4.444444  2.777778  2.777778  2.777778  4.444444  5.555556
##  [8]  8.333333  6.111111  7.222222  6.666667  7.222222 12.777778  7.777778
## [15]  5.000000  6.666667  8.888889  9.444444  7.222222  4.444444  3.333333
## [22]  5.000000  5.000000  3.888889  5.555556  5.555556  8.333333  7.777778
## [29]  6.111111  6.111111  5.000000

7 Graficas de L1 y L2

library(lattice)
dias <- c(1:31)

xyplot(L1_2~dias, type = 'b', pch=6, main = 'L1')

xyplot(L2_2~dias, type = 'b')

punto 2

set.seed(1514)
Datos_1 <- rnorm(50, 5.5, 0.5)
options(digits = 2)


cv.n <- function(x){
  md <- mean(x)
  dev <- sd(x)
  n <- dev/md
  md_min <- mean(x[-min(x)])
  dev_min <- sd(x[-min(x)])
  n_min <- dev_min/md_min
  md_max <- mean(x[-max(x)])
  dev_max <- sd(x[-max(x)])
  n_max <- dev_max/md_max
  md_min_max <- mean(x[-c(min(x), max(x))])
  dev_min_max <- sd(x[-c(min(x), max(x))])
  n_min_max <- dev_min_max/md_min_max
  qn_1 <- quantile(x, 0.025)
  qn_2 <- quantile(x, 0.975)
  md_truncado5<-mean(x[x>qn_1 & x<qn_2])
  dev_truncado5<-sd(x[x>qn_1 & x<qn_2])
  n_truncado5<- dev_truncado5/md_truncado5
  Tabla <- data.frame(
  "Para" = c('n', 'n-min', 'n-max', 'n-min-max', 'n-truncado5'),
  "c.vn" = c(n, n_min, n_max, n_min_max, n_truncado5), 
  "Media simulada" = c(md, md_min, md_max, md_min_max, md_truncado5), 
  "Desviación simulada" = c(dev, dev_min, dev_max, dev_min_max, dev_truncado5))
  print(Tabla)
  options(digits = 2)
}

cv.n(Datos_1)
##          Para  c.vn Media.simulada Desviación.simulada
## 1           n 0.096            5.5                0.53
## 2       n-min 0.097            5.5                0.53
## 3       n-max 0.097            5.5                0.54
## 4   n-min-max 0.098            5.5                0.54
## 5 n-truncado5 0.083            5.5                0.46