This week, we are going to use data from Gavin and Hofmann (2002), a study on organizational climate and attitudes published in Leadership Quarterly. Here, we have individuals soldiers nested within companies. This is the same dataset that Garson uses in Chapter 6, so you can recreate his analysis.
library(tidyverse)
library(psych)
library(lme4)
glimpse(lq2002)
Rows: 2,042
Columns: 28
$ ROWID [3m[38;5;246m<dbl>[39m[23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,…
$ COMPID [3m[38;5;246m<dbl>[39m[23m 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
$ SUB [3m[38;5;246m<dbl>[39m[23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,…
$ LEAD01 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 1, 2, 3, 3, 3, 4, 2, 2, 4, 4, 1, 2, 4, 4, 4, 4, 4, 3, …
$ LEAD02 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 1, 3, 2, 3, 4, 3, 4, 3, 4, 4, 1, 1, 5, 4, 5, 4, 2, 4, …
$ LEAD03 [3m[38;5;246m<dbl>[39m[23m 2, 2, 2, 1, 1, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 2, 3, 4, 1, 4, 2, 4, …
$ LEAD04 [3m[38;5;246m<dbl>[39m[23m 3, 4, 4, 1, 1, 4, 1, 4, 2, 4, 3, 1, 4, 4, 1, 4, 5, 4, 1, 5, 1, 4, …
$ LEAD05 [3m[38;5;246m<dbl>[39m[23m 2, 4, 2, 1, 3, 2, 2, 2, 3, 3, 1, 2, 4, 4, 1, 3, 3, 4, 1, 2, 2, 3, …
$ LEAD06 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 2, 4, 2, 2, 3, 4, 3, 4, 4, 4, 1, 3, 5, 4, 4, 2, 2, 4, …
$ LEAD07 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 4, 1, 3, 2, 2, 3, 3, 3, 1, 4, 3, 1, 5, 3, 4, 1, 3, 2, 3, …
$ LEAD08 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 2, 1, 4, 2, 4, 1, 4, 4, 3, 4, 4, 1, 2, 5, 4, 1, 3, 2, 4, …
$ LEAD09 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 3, 1, 2, 3, 2, 3, 3, 2, 2, 4, 4, 1, 4, 1, 4, 1, 4, 2, 2, …
$ LEAD10 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 3, 1, 4, 4, 2, 2, 4, 3, 2, 4, 4, 1, 2, 5, 4, 4, 4, 1, 4, …
$ LEAD11 [3m[38;5;246m<dbl>[39m[23m 4, 3, 2, 2, 1, 3, 2, 4, 3, 3, 2, 1, 4, 4, 1, 2, 4, 4, 1, 4, 2, 3, …
$ TSIG01 [3m[38;5;246m<dbl>[39m[23m 1, 3, 5, 1, 4, 4, 2, 2, 4, 4, 3, 3, 4, 4, 1, 1, 4, 4, 1, 5, 1, 4, …
$ TSIG02 [3m[38;5;246m<dbl>[39m[23m 5, 4, 5, 3, 4, 4, 4, 2, 3, 4, 4, 3, 4, 4, 1, 5, 4, 4, 5, 5, 4, 4, …
$ TSIG03 [3m[38;5;246m<dbl>[39m[23m 5, 3, 5, 2, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 1, 4, 5, 4, 5, 5, 4, 4, …
$ HOSTIL01 [3m[38;5;246m<dbl>[39m[23m 0, 3, 1, 2, 2, 0, 2, 0, 0, 1, 1, 2, 0, 0, 4, 3, 1, 0, 4, 3, 4, 1, …
$ HOSTIL02 [3m[38;5;246m<dbl>[39m[23m 0, 2, 0, 1, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 1, 4, 1, …
$ HOSTIL03 [3m[38;5;246m<dbl>[39m[23m 0, 0, 0, 3, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 2, 2, 0, …
$ HOSTIL04 [3m[38;5;246m<dbl>[39m[23m 0, 0, 0, 3, 0, 0, 1, 0, 4, 0, 0, 1, 0, 0, 4, 0, 0, 0, 4, 3, 2, 0, …
$ HOSTIL05 [3m[38;5;246m<dbl>[39m[23m 0, 1, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 2, 3, 0, …
$ LEAD [3m[38;5;246m<dbl>[39m[23m 3.363636, 3.727273, 3.454545, 1.818182, 1.272727, 3.000000, 2.2727…
$ TSIG [3m[38;5;246m<dbl>[39m[23m 3.666667, 3.333333, 5.000000, 2.000000, 4.000000, 4.000000, 3.3333…
$ HOSTILE [3m[38;5;246m<dbl>[39m[23m 0.0, 1.2, 0.4, 1.8, 0.4, 0.0, 0.8, 0.0, 3.2, 0.2, 0.2, 1.4, 0.0, 0…
$ GLEAD [3m[38;5;246m<dbl>[39m[23m 2.882576, 2.882576, 2.882576, 2.882576, 2.882576, 2.882576, 2.8825…
$ GTSIG [3m[38;5;246m<dbl>[39m[23m 3.541667, 3.541667, 3.541667, 3.541667, 3.541667, 3.541667, 3.5416…
$ GHOSTILE [3m[38;5;246m<dbl>[39m[23m 1.0416667, 1.0416667, 1.0416667, 1.0416667, 1.0416667, 1.0416667, …
Remember our old friend describe from the psych package a few weeks ago? This is a great way to get a detailed summary of all the variables in a dataset.
This week, we are going to get a crash course in how to calculate reliability using Cronbach’s alpha. The alpha function in the psych package is a quick and easy way to calculate alpha:
alpha(hostile_items)
Reliability analysis
Call: alpha(x = hostile_items)
lower alpha upper 95% confidence boundaries
0.86 0.87 0.88
Reliability if an item is dropped:
Item statistics
Non missing response frequency for each item
0 1 2 3 4 miss
HOSTIL01 0.32 0.25 0.17 0.13 0.13 0
HOSTIL02 0.67 0.17 0.07 0.04 0.05 0
HOSTIL03 0.53 0.17 0.09 0.08 0.12 0
HOSTIL04 0.60 0.15 0.08 0.07 0.10 0
HOSTIL05 0.66 0.18 0.08 0.04 0.03 0
Now, we can create a new variable, hostile, that is constructed by taking the mean of our 5 hostile items.
my.keys.list <- list(hostile = c("HOSTIL01","HOSTIL02","HOSTIL03", "HOSTIL04","HOSTIL05"))
my.scales <- scoreItems(my.keys.list, lq2002, impute = "none")
print(my.scales, short = FALSE)
Call: scoreItems(keys = my.keys.list, items = lq2002, impute = "none")
(Standardized) Alpha:
hostile
alpha 0.87
Standard errors of unstandardized Alpha:
hostile
ASE 0.011
Standardized Alpha of observed scales:
hostile
[1,] 0.87
Average item correlation:
hostile
average.r 0.58
Median item correlation:
hostile
0.56
Guttman 6* reliability:
hostile
Lambda.6 0.87
Signal/Noise based upon av.r :
hostile
Signal/Noise 6.9
Scale intercorrelations corrected for attenuation
raw correlations below the diagonal, alpha on the diagonal
corrected correlations above the diagonal:
Note that these are the correlations of the complete scales based on the correlation matrix,
not the observed scales based on the raw items.
hostile
hostile 0.87
Item by scale correlations:
corrected for item overlap and scale reliability
hostile
HOSTIL01 0.70
HOSTIL02 0.73
HOSTIL03 0.81
HOSTIL04 0.84
HOSTIL05 0.74
Non missing response frequency for each item
0 1 2 3 4 miss
HOSTIL01 0.32 0.25 0.17 0.13 0.13 0
HOSTIL02 0.67 0.17 0.07 0.04 0.05 0
HOSTIL03 0.53 0.17 0.09 0.08 0.12 0
HOSTIL04 0.60 0.15 0.08 0.07 0.10 0
HOSTIL05 0.66 0.18 0.08 0.04 0.03 0
my.scores <- as_tibble(my.scales$scores)
glimpse(lq2002.1)
Rows: 2,042
Columns: 29
$ ROWID [3m[38;5;246m<dbl>[39m[23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,…
$ COMPID [3m[38;5;246m<dbl>[39m[23m 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
$ SUB [3m[38;5;246m<dbl>[39m[23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,…
$ LEAD01 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 1, 2, 3, 3, 3, 4, 2, 2, 4, 4, 1, 2, 4, 4, 4, 4, 4, 3, …
$ LEAD02 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 1, 3, 2, 3, 4, 3, 4, 3, 4, 4, 1, 1, 5, 4, 5, 4, 2, 4, …
$ LEAD03 [3m[38;5;246m<dbl>[39m[23m 2, 2, 2, 1, 1, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 2, 3, 4, 1, 4, 2, 4, …
$ LEAD04 [3m[38;5;246m<dbl>[39m[23m 3, 4, 4, 1, 1, 4, 1, 4, 2, 4, 3, 1, 4, 4, 1, 4, 5, 4, 1, 5, 1, 4, …
$ LEAD05 [3m[38;5;246m<dbl>[39m[23m 2, 4, 2, 1, 3, 2, 2, 2, 3, 3, 1, 2, 4, 4, 1, 3, 3, 4, 1, 2, 2, 3, …
$ LEAD06 [3m[38;5;246m<dbl>[39m[23m 2, 4, 4, 1, 2, 4, 2, 2, 3, 4, 3, 4, 4, 4, 1, 3, 5, 4, 4, 2, 2, 4, …
$ LEAD07 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 4, 1, 3, 2, 2, 3, 3, 3, 1, 4, 3, 1, 5, 3, 4, 1, 3, 2, 3, …
$ LEAD08 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 2, 1, 4, 2, 4, 1, 4, 4, 3, 4, 4, 1, 2, 5, 4, 1, 3, 2, 4, …
$ LEAD09 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 3, 1, 2, 3, 2, 3, 3, 2, 2, 4, 4, 1, 4, 1, 4, 1, 4, 2, 2, …
$ LEAD10 [3m[38;5;246m<dbl>[39m[23m 5, 4, 4, 3, 1, 4, 4, 2, 2, 4, 3, 2, 4, 4, 1, 2, 5, 4, 4, 4, 1, 4, …
$ LEAD11 [3m[38;5;246m<dbl>[39m[23m 4, 3, 2, 2, 1, 3, 2, 4, 3, 3, 2, 1, 4, 4, 1, 2, 4, 4, 1, 4, 2, 3, …
$ TSIG01 [3m[38;5;246m<dbl>[39m[23m 1, 3, 5, 1, 4, 4, 2, 2, 4, 4, 3, 3, 4, 4, 1, 1, 4, 4, 1, 5, 1, 4, …
$ TSIG02 [3m[38;5;246m<dbl>[39m[23m 5, 4, 5, 3, 4, 4, 4, 2, 3, 4, 4, 3, 4, 4, 1, 5, 4, 4, 5, 5, 4, 4, …
$ TSIG03 [3m[38;5;246m<dbl>[39m[23m 5, 3, 5, 2, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 1, 4, 5, 4, 5, 5, 4, 4, …
$ HOSTIL01 [3m[38;5;246m<dbl>[39m[23m 0, 3, 1, 2, 2, 0, 2, 0, 0, 1, 1, 2, 0, 0, 4, 3, 1, 0, 4, 3, 4, 1, …
$ HOSTIL02 [3m[38;5;246m<dbl>[39m[23m 0, 2, 0, 1, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 1, 4, 1, …
$ HOSTIL03 [3m[38;5;246m<dbl>[39m[23m 0, 0, 0, 3, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 2, 2, 0, …
$ HOSTIL04 [3m[38;5;246m<dbl>[39m[23m 0, 0, 0, 3, 0, 0, 1, 0, 4, 0, 0, 1, 0, 0, 4, 0, 0, 0, 4, 3, 2, 0, …
$ HOSTIL05 [3m[38;5;246m<dbl>[39m[23m 0, 1, 1, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 2, 3, 0, …
$ LEAD [3m[38;5;246m<dbl>[39m[23m 3.363636, 3.727273, 3.454545, 1.818182, 1.272727, 3.000000, 2.2727…
$ TSIG [3m[38;5;246m<dbl>[39m[23m 3.666667, 3.333333, 5.000000, 2.000000, 4.000000, 4.000000, 3.3333…
$ HOSTILE [3m[38;5;246m<dbl>[39m[23m 0.0, 1.2, 0.4, 1.8, 0.4, 0.0, 0.8, 0.0, 3.2, 0.2, 0.2, 1.4, 0.0, 0…
$ GLEAD [3m[38;5;246m<dbl>[39m[23m 2.882576, 2.882576, 2.882576, 2.882576, 2.882576, 2.882576, 2.8825…
$ GTSIG [3m[38;5;246m<dbl>[39m[23m 3.541667, 3.541667, 3.541667, 3.541667, 3.541667, 3.541667, 3.5416…
$ GHOSTILE [3m[38;5;246m<dbl>[39m[23m 1.0416667, 1.0416667, 1.0416667, 1.0416667, 1.0416667, 1.0416667, …
$ hostile [3m[38;5;246m<dbl>[39m[23m 0.0, 1.2, 0.4, 1.8, 0.4, 0.0, 0.8, 0.0, 3.2, 0.2, 0.2, 1.4, 0.0, 0…
Let’s take a look at some of the key variables for our analysis. We have three variables, all which are scale scores constructed just like we did for the example above.
hist(lq2002$HOSTILE,
main = "Distribution of Hostility Scores",
sub = "N = 2,042 U.S. Army active duty soliders. Data from Gavin and Hofmann (2002).",
xlab = "Scaled Hostility Score")
hist(lq2002$TSIG,
main = "Distribution of Task Significance Scores",
sub = "N = 2,042 U.S. Army active duty soliders. Data from Gavin and Hofmann (2002).",
xlab = "Scaled Task Significance Score")
hist(lq2002$LEAD,
main = "Distribution of Leadership Climate Scores",
sub = "N = 2,042 U.S. Army active duty soliders. Data from Gavin and Hofmann (2002).",
xlab = "Scaled Leadership Climate Score")
models <- list()
model.0 <- lmer(HOSTILE ~ (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.0)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5888.9 5905.8 -2941.5 5882.9 2039
Scaled residuals:
Min 1Q Median 3Q Max
-1.3826 -0.7294 -0.3230 0.5086 3.1628
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.05765 0.2401
Residual 1.01668 1.0083
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.90632 0.04308 21.04
Here’s a quick and easy way to get our friend the ICC!
null.ICC <- 0.05765/(0.05765 + 1.01668)
null.ICC
[1] 0.05366135
lmerTest to Evaluate Random Effects:lmerTest::rand(model.0)
ANOVA-like table for random-effects: Single term deletions
Model:
HOSTILE ~ (1 | COMPID)
npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -2941.5 5888.9
(1 | COMPID) 2 -2970.2 5944.3 57.4 1 3.556e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TSIGmodel.1 <- lmer(HOSTILE ~ TSIG + (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ TSIG + (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5668.4 5690.9 -2830.2 5660.4 2038
Scaled residuals:
Min 1Q Median 3Q Max
-1.9601 -0.7135 -0.2688 0.4734 3.4848
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.02817 0.1678
Residual 0.91938 0.9588
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 1.96574 0.07574 25.95
TSIG -0.33180 0.02145 -15.47
Correlation of Fixed Effects:
(Intr)
TSIG -0.894
LEADmodel.2 <- lmer(HOSTILE ~ TSIG + LEAD + (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ TSIG + LEAD + (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5540.7 5568.9 -2765.4 5530.7 2037
Scaled residuals:
Min 1Q Median 3Q Max
-2.3574 -0.6918 -0.2278 0.5180 3.4823
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.02028 0.1424
Residual 0.86544 0.9303
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.56714 0.08847 29.017
TSIG -0.18610 0.02434 -7.646
LEAD -0.35010 0.03021 -11.588
Correlation of Fixed Effects:
(Intr) TSIG
TSIG -0.328
LEAD -0.577 -0.523
LEAD and TSIGmodel.3 <- lmer(HOSTILE ~ TSIG + LEAD + TSIG:LEAD + (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ TSIG + LEAD + TSIG:LEAD + (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5539.6 5573.3 -2763.8 5527.6 2036
Scaled residuals:
Min 1Q Median 3Q Max
-2.5016 -0.6809 -0.2376 0.5107 3.4871
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.02012 0.1419
Residual 0.86416 0.9296
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.89374 0.20342 14.225
TSIG -0.29435 0.06543 -4.499
LEAD -0.47236 0.07498 -6.300
TSIG:LEAD 0.03858 0.02166 1.781
Correlation of Fixed Effects:
(Intr) TSIG LEAD
TSIG -0.889
LEAD -0.925 0.771
TSIG:LEAD 0.901 -0.928 -0.915
GTSIGmodel.4 <- lmer(HOSTILE ~ TSIG + LEAD + GTSIG + (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ TSIG + LEAD + GTSIG + (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5533.7 5567.4 -2760.8 5521.7 2036
Scaled residuals:
Min 1Q Median 3Q Max
-2.3166 -0.6960 -0.2211 0.5170 3.4998
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.009905 0.09952
Residual 0.867050 0.93116
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.40718 0.25785 13.214
TSIG -0.17234 0.02479 -6.953
LEAD -0.35177 0.02996 -11.741
GTSIG -0.27729 0.08258 -3.358
Correlation of Fixed Effects:
(Intr) TSIG LEAD
TSIG 0.105
LEAD -0.205 -0.511
GTSIG -0.942 -0.227 0.010
GLEADmodel.5 <- lmer(HOSTILE ~ TSIG + LEAD + GTSIG + GLEAD + (1|COMPID), REML = FALSE, data = lq2002.1)
summary(model.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: HOSTILE ~ TSIG + LEAD + GTSIG + GLEAD + (1 | COMPID)
Data: lq2002.1
AIC BIC logLik deviance df.resid
5535.2 5574.6 -2760.6 5521.2 2035
Scaled residuals:
Min 1Q Median 3Q Max
-2.3187 -0.6941 -0.2225 0.5113 3.4930
Random effects:
Groups Name Variance Std.Dev.
COMPID (Intercept) 0.009737 0.09868
Residual 0.866974 0.93111
Number of obs: 2042, groups: COMPID, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.52131 0.31006 11.357
TSIG -0.17486 0.02508 -6.971
LEAD -0.34583 0.03132 -11.042
GTSIG -0.24989 0.09273 -2.695
GLEAD -0.06981 0.10715 -0.651
Correlation of Fixed Effects:
(Intr) TSIG LEAD GTSIG
TSIG 0.000
LEAD 0.000 -0.528
GTSIG -0.437 -0.271 0.143
GLEAD -0.559 0.154 -0.292 -0.460
model.2 with model.3:anova(model.2, model.3)
Data: lq2002.1
Models:
model.2: HOSTILE ~ TSIG + LEAD + (1 | COMPID)
model.3: HOSTILE ~ TSIG + LEAD + TSIG:LEAD + (1 | COMPID)
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
model.2 5 5540.7 5568.9 -2765.4 5530.7
model.3 6 5539.6 5573.3 -2763.8 5527.6 3.1706 1 0.07498 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
modelsummary and broom.mixed Packages to Organize Your Results:| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
|---|---|---|---|---|---|---|
| (Intercept) | 0.906 | 1.966 | 2.567 | 2.894 | 3.407 | 3.521 |
| (0.043) | (0.076) | (0.088) | (0.203) | (0.258) | (0.310) | |
| sd__(Intercept) | 0.240 | 0.168 | 0.142 | 0.142 | 0.100 | 0.099 |
| sd__Observation | 1.008 | 0.959 | 0.930 | 0.930 | 0.931 | 0.931 |
| TSIG | -0.332 | -0.186 | -0.294 | -0.172 | -0.175 | |
| (0.021) | (0.024) | (0.065) | (0.025) | (0.025) | ||
| LEAD | -0.350 | -0.472 | -0.352 | -0.346 | ||
| (0.030) | (0.075) | (0.030) | (0.031) | |||
| TSIG × LEAD | 0.039 | |||||
| (0.022) | ||||||
| GTSIG | -0.277 | -0.250 | ||||
| (0.083) | (0.093) | |||||
| GLEAD | -0.070 | |||||
| (0.107) | ||||||
| AIC | 5888.9 | 5668.4 | 5540.7 | 5539.6 | 5533.7 | 5535.2 |
| BIC | 5905.8 | 5690.9 | 5568.9 | 5573.3 | 5567.4 | 5574.6 |
| Log.Lik. | -2941.475 | -2830.193 | -2765.375 | -2763.789 | -2760.833 | -2760.621 |
modelsummary(models, output = 'msum.html', title = 'MLM Estimates')
[WARNING] This document format requires a nonempty <title> element.
Please specify either 'title' or 'pagetitle' in the metadata.
Falling back to 'msum'