Total Nonrevolving Credit Owned and Securitized, Outstanding (NONREVSL)
Total revolving Credit Owned and Securitized, Outstanding (REVOLSL)
Total Consumer Credit Owned and Securitized, Outstanding (TOTALSL)
symbol1 <-fredr_series_observations(series_id = "NONREVSL",
observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "REVOLSL",
observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
symbol3 <-fredr_series_observations(series_id = "TOTALSL",
observation_start = as.Date("2019-01-01"))
indicator3 <-as.data.frame(symbol3)[,c(1,3)]
indicator <-full_join(indicator1,indicator2, by="date")
indicator <-full_join(indicator,indicator3, by="date")
colnames(indicator) <- c("date","Non_revolving","Revolving","Total")
#------------------------
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue" ) %>%
column_spec(4, T, color = "green" )
date
|
Non_revolving
|
Revolving
|
Total
|
2019-01-01
|
2957
|
1058.4
|
4016
|
2019-02-01
|
2970
|
1062.2
|
4032
|
2019-03-01
|
2983
|
1061.1
|
4044
|
2019-04-01
|
2994
|
1067.8
|
4062
|
2019-05-01
|
3004
|
1072.2
|
4077
|
2019-06-01
|
3015
|
1073.4
|
4088
|
2019-07-01
|
3027
|
1084.7
|
4112
|
2019-08-01
|
3042
|
1084.7
|
4127
|
2019-09-01
|
3053
|
1084.9
|
4138
|
2019-10-01
|
3064
|
1088.0
|
4152
|
2019-11-01
|
3076
|
1082.7
|
4159
|
2019-12-01
|
3086
|
1094.2
|
4181
|
2020-01-01
|
3098
|
1092.7
|
4191
|
2020-02-01
|
3112
|
1098.7
|
4211
|
2020-03-01
|
3118
|
1078.1
|
4196
|
2020-04-01
|
3109
|
1020.5
|
4130
|
2020-05-01
|
3118
|
996.8
|
4115
|
2020-06-01
|
3132
|
995.0
|
4127
|
2020-07-01
|
3144
|
994.7
|
4139
|
chart <- indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=Non_revolving),color="red",size=1) +
geom_line(mapping = aes(x=date,y=Revolving),color="blue",size=1) +
geom_line(mapping = aes(x=date,y=Total),color="green",size=1) +
labs(title = "Consumer Credit Outstanding",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="", y="",
caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
theme_economist()
chart + geom_text(aes(x = max(date),y=last(Non_revolving),label="Non_revolving"))+
geom_text(aes(x = max(date),y=last(Revolving),label="Revolving")) +
geom_text(aes(x = max(date),y=last(Total),label="Total"))

*******************************************************************
Current Work Hours; Percent Reporting Decreases for Federal Reserve District 3 (AWCDNA156MNFRBPHI)
Current Work Hours; Percent Reporting Increases for Federal Reserve District 3 (AWCINA156MNFRBPHI)
symbol1 <-fredr_series_observations(series_id = "AWCDNA156MNFRBPHI",
observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "AWCINA156MNFRBPHI",
observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
indicator <-full_join(symbol1,symbol2, by="date")
indicator <- indicator[,c(1,3,5)]
colnames(indicator) <- c("date","Decrease","Increase")
#------------------------
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue" )
date
|
Decrease
|
Increase
|
2019-01-01
|
17.0
|
18.9
|
2019-02-01
|
8.5
|
11.9
|
2019-03-01
|
5.7
|
22.6
|
2019-04-01
|
8.8
|
24.6
|
2019-05-01
|
5.2
|
22.4
|
2019-06-01
|
10.0
|
20.0
|
2019-07-01
|
1.8
|
21.1
|
2019-08-01
|
19.7
|
23.0
|
2019-09-01
|
8.6
|
19.0
|
2019-10-01
|
12.3
|
22.8
|
2019-11-01
|
12.5
|
16.1
|
2019-12-01
|
13.3
|
18.3
|
2020-01-01
|
15.0
|
15.0
|
2020-02-01
|
7.1
|
16.1
|
2020-03-01
|
8.8
|
15.8
|
2020-04-01
|
52.4
|
3.2
|
2020-05-01
|
18.9
|
17.0
|
2020-06-01
|
17.4
|
13.0
|
2020-07-01
|
9.6
|
25.0
|
2020-08-01
|
10.5
|
19.3
|
indicator2 <- indicator %>%
dateCast()
## Warning: Unknown or uninitialised column: `period`.
## Warning: Unknown or uninitialised column: `year`.
## Please be sure to have columns named 'year' and 'period' in your dataframe as they are returned from the bls_api() function.
chart <- indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=Decrease),color="red",size=1) +
geom_line(mapping = aes(x=date,y=Increase),color="blue",size=1) +
labs(title = "CURRENT Work Hour Changes: Increasing or Decreasing",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Percentage from previous month",
caption = "Data source: FRED Philadelphia Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()
chart + geom_text(aes(x = max(date),y=last(Increase),label="Increase"))+
geom_text(aes(x = max(date),y=last(Decrease),label="Decrease"))

Future Hours: Percent Reporting Decreases for Federal Reserve District 3 (AWFDNA156MNFRBPHI)
Future Hours; Percent Reporting Increases for Federal Reserve District 3 (AWFINA156MNFRBPHI)
Future Hours; Percent Reporting No Change for Federal Reserve District 3 (AWFNNA156MNFRBPHI)
symbol1 <-fredr_series_observations(series_id = "AWFDNA156MNFRBPHI",
observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "AWFINA156MNFRBPHI",
observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
symbol3 <-fredr_series_observations(series_id = "AWFNNA156MNFRBPHI",
observation_start = as.Date("2019-01-01"))
indicator3 <-as.data.frame(symbol3)[,c(1,3)]
indicator <-full_join(indicator1,indicator2, by="date")
indicator <-full_join(indicator,indicator3, by="date")
colnames(indicator) <- c("date","Decrease","Increase","No_Change")
#------------------------
indicator %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" ) %>%
column_spec(3, T, color = "blue" ) %>%
column_spec(4, T, color = "green" )
date
|
Decrease
|
Increase
|
No_Change
|
2019-01-01
|
5.7
|
28.3
|
58.5
|
2019-02-01
|
5.1
|
20.3
|
71.2
|
2019-03-01
|
11.3
|
26.4
|
60.4
|
2019-04-01
|
7.0
|
14.0
|
75.4
|
2019-05-01
|
13.8
|
19.0
|
62.1
|
2019-06-01
|
18.3
|
23.3
|
53.3
|
2019-07-01
|
19.3
|
19.3
|
59.6
|
2019-08-01
|
11.5
|
14.8
|
68.9
|
2019-09-01
|
15.5
|
17.2
|
63.8
|
2019-10-01
|
10.5
|
21.1
|
64.9
|
2019-11-01
|
10.7
|
26.8
|
60.7
|
2019-12-01
|
10.0
|
33.3
|
55.0
|
2020-01-01
|
6.7
|
28.3
|
60.0
|
2020-02-01
|
5.4
|
39.3
|
51.8
|
2020-03-01
|
5.3
|
26.3
|
64.9
|
2020-04-01
|
9.5
|
38.1
|
42.9
|
2020-05-01
|
9.4
|
24.5
|
54.7
|
2020-06-01
|
10.9
|
30.4
|
50.0
|
2020-07-01
|
9.6
|
28.8
|
55.8
|
2020-08-01
|
14.0
|
26.3
|
52.6
|
chart <- indicator %>% ggplot() +
geom_line(mapping = aes(x=date,y=Decrease),color="red",size=1) +
geom_line(mapping = aes(x=date,y=Increase),color="blue",size=1) +
geom_line(mapping = aes(x=date,y=No_Change),color="green",size=1) +
labs(title = "FUTURE Work Hour Changes: Increase or Decrease or No Change",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Percentage from previous month",
caption = "Data source: FRED Philadelphia Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()
chart + geom_text(aes(x = max(date),y=last(Increase),label="Increase"))+
geom_text(aes(x = max(date),y=last(Decrease),label="Decrease")) +
geom_text(aes(x = max(date),y=last(No_Change),label="No Change"))

Weekly Hours Worked: Manufacturing for the United States (HOHWMN02USM065N)
indicator <-fredr_series_observations(series_id = "HOHWMN02USM065N",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
41.7
|
2019-02-01
|
41.5
|
2019-03-01
|
41.6
|
2019-04-01
|
41.6
|
2019-05-01
|
41.5
|
2019-06-01
|
41.8
|
2019-07-01
|
41.2
|
2019-08-01
|
41.7
|
2019-09-01
|
41.7
|
2019-10-01
|
41.5
|
2019-11-01
|
41.7
|
2019-12-01
|
41.9
|
2020-01-01
|
41.2
|
2020-02-01
|
41.2
|
2020-03-01
|
41.1
|
2020-04-01
|
38.3
|
2020-05-01
|
39.3
|
2020-06-01
|
39.9
|
2020-07-01
|
40.3
|
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "Weekly Hours Worked: Manufacturing for the United States",
subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of People",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()+
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-08-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)

Employment Level - Persons At Work 1-34 Hours, Economic Reasons, All Industries (LNU02032194)
indicator <-fredr_series_observations(series_id = "LNU02032194",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
5640
|
2019-02-01
|
4561
|
2019-03-01
|
4621
|
2019-04-01
|
4483
|
2019-05-01
|
4160
|
2019-06-01
|
4602
|
2019-07-01
|
4102
|
2019-08-01
|
4316
|
2019-09-01
|
3992
|
2019-10-01
|
4046
|
2019-11-01
|
4110
|
2019-12-01
|
4247
|
2020-01-01
|
4732
|
2020-02-01
|
4600
|
2020-03-01
|
5879
|
2020-04-01
|
10684
|
2020-05-01
|
10429
|
2020-06-01
|
9306
|
2020-07-01
|
8572
|
2020-08-01
|
7488
|
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "Part-time employment: All Industries",
subtitle = str_glue("At work from 1 to 34 hours \nfrom {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of People",
caption = "Data source: FRED Federal Reserve. Illustration by @JoeLongSanDiego")+
theme_economist()+
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-08-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)

KC Fed Labor Market Conditions Index, Level of Activity Indicator (FRBKCLMCILA)
A positive value indicates that labor market conditions are above their long-run average, while a negative value signifies that labor market conditions are below their long-run average.
For more information regarding this series visit the release website at http://www.kc.frb.org/research/indicatorsdata/lmci/index.cfm .
indicator <-fredr_series_observations(series_id = "FRBKCLMCILA",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
0.8944
|
2019-02-01
|
0.9844
|
2019-03-01
|
0.9477
|
2019-04-01
|
1.0006
|
2019-05-01
|
1.0397
|
2019-06-01
|
1.0122
|
2019-07-01
|
1.1909
|
2019-08-01
|
1.0251
|
2019-09-01
|
1.0398
|
2019-10-01
|
0.9657
|
2019-11-01
|
1.0187
|
2019-12-01
|
1.0942
|
2020-01-01
|
1.1598
|
2020-02-01
|
1.0731
|
2020-03-01
|
0.1852
|
2020-04-01
|
-2.0233
|
2020-05-01
|
-1.0691
|
2020-06-01
|
-0.5602
|
2020-07-01
|
-1.1835
|
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "Labor Market Conditions Index",
subtitle = str_glue("Zero Index: the long-run average\nfrom {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Index",
caption = "Data source: Kansas City Federal Reserve.\nIllustration by @JoeLongSanDiego")+
theme_economist()+
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-07-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)+
geom_hline(yintercept = 0,color="red")

Employment Level - Part-Time for Economic Reasons, Slack Work or Business Conditions, All Industries (LNS12032195)
indicator <-fredr_series_observations(series_id = "LNS12032195",
observation_start = as.Date("2019-01-01"))
indicator[,c(1,3)] %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date
|
value
|
2019-01-01
|
3402
|
2019-02-01
|
2779
|
2019-03-01
|
2887
|
2019-04-01
|
2868
|
2019-05-01
|
2647
|
2019-06-01
|
2704
|
2019-07-01
|
2392
|
2019-08-01
|
2683
|
2019-09-01
|
2600
|
2019-10-01
|
2747
|
2019-11-01
|
2634
|
2019-12-01
|
2657
|
2020-01-01
|
2655
|
2020-02-01
|
2776
|
2020-03-01
|
4043
|
2020-04-01
|
9939
|
2020-05-01
|
9543
|
2020-06-01
|
7939
|
2020-07-01
|
7281
|
2020-08-01
|
6214
|
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value),
color = "blue4",size=1) +
labs(title = "Under-employment: Part-Time Employment due to Business Condition ",
subtitle = str_glue("Zero Index: the long-run average\nfrom {min(indicator$date)} through {max(indicator$date)}"),
x="Monthly", y="Thousands of Persons",
caption = "Data source: U.S. Bureau of Labor Statistics (LNS12032195).\nIllustration by @JoeLongSanDiego")+
theme_economist()+
geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-07-2020'), ymin = -Inf, ymax = Inf),
fill = "grey", alpha = 0.03)

# geom_hline(yintercept = 0,color="red")