Total Nonrevolving Credit Owned and Securitized, Outstanding (NONREVSL)

Total revolving Credit Owned and Securitized, Outstanding (REVOLSL)

Total Consumer Credit Owned and Securitized, Outstanding (TOTALSL)

symbol1 <-fredr_series_observations(series_id = "NONREVSL", 
      observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "REVOLSL", 
      observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
symbol3 <-fredr_series_observations(series_id = "TOTALSL", 
      observation_start = as.Date("2019-01-01"))
indicator3 <-as.data.frame(symbol3)[,c(1,3)]

indicator <-full_join(indicator1,indicator2, by="date")
indicator <-full_join(indicator,indicator3, by="date")

colnames(indicator) <- c("date","Non_revolving","Revolving","Total")

#------------------------
indicator %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) %>%
   column_spec(3, T, color = "blue" ) %>%
   column_spec(4, T, color = "green" ) 
date Non_revolving Revolving Total
2019-01-01 2957 1058.4 4016
2019-02-01 2970 1062.2 4032
2019-03-01 2983 1061.1 4044
2019-04-01 2994 1067.8 4062
2019-05-01 3004 1072.2 4077
2019-06-01 3015 1073.4 4088
2019-07-01 3027 1084.7 4112
2019-08-01 3042 1084.7 4127
2019-09-01 3053 1084.9 4138
2019-10-01 3064 1088.0 4152
2019-11-01 3076 1082.7 4159
2019-12-01 3086 1094.2 4181
2020-01-01 3098 1092.7 4191
2020-02-01 3112 1098.7 4211
2020-03-01 3118 1078.1 4196
2020-04-01 3109 1020.5 4130
2020-05-01 3118 996.8 4115
2020-06-01 3132 995.0 4127
2020-07-01 3144 994.7 4139
chart <- indicator %>% ggplot() + 
  geom_line(mapping = aes(x=date,y=Non_revolving),color="red",size=1)  +
  geom_line(mapping = aes(x=date,y=Revolving),color="blue",size=1)  +
   geom_line(mapping = aes(x=date,y=Total),color="green",size=1)  +
     labs(title = "Consumer Credit Outstanding", 
          subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="", y="",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego")+
    theme_economist()

chart + geom_text(aes(x = max(date),y=last(Non_revolving),label="Non_revolving"))+
        geom_text(aes(x = max(date),y=last(Revolving),label="Revolving")) +
        geom_text(aes(x = max(date),y=last(Total),label="Total")) 

*******************************************************************

Current Work Hours; Percent Reporting Decreases for Federal Reserve District 3 (AWCDNA156MNFRBPHI)

Current Work Hours; Percent Reporting Increases for Federal Reserve District 3 (AWCINA156MNFRBPHI)

symbol1 <-fredr_series_observations(series_id = "AWCDNA156MNFRBPHI", 
      observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "AWCINA156MNFRBPHI", 
      observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]

indicator <-full_join(symbol1,symbol2, by="date")
indicator <- indicator[,c(1,3,5)]
colnames(indicator) <- c("date","Decrease","Increase")

#------------------------
indicator %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) %>%
   column_spec(3, T, color = "blue" ) 
date Decrease Increase
2019-01-01 17.0 18.9
2019-02-01 8.5 11.9
2019-03-01 5.7 22.6
2019-04-01 8.8 24.6
2019-05-01 5.2 22.4
2019-06-01 10.0 20.0
2019-07-01 1.8 21.1
2019-08-01 19.7 23.0
2019-09-01 8.6 19.0
2019-10-01 12.3 22.8
2019-11-01 12.5 16.1
2019-12-01 13.3 18.3
2020-01-01 15.0 15.0
2020-02-01 7.1 16.1
2020-03-01 8.8 15.8
2020-04-01 52.4 3.2
2020-05-01 18.9 17.0
2020-06-01 17.4 13.0
2020-07-01 9.6 25.0
2020-08-01 10.5 19.3
indicator2 <- indicator %>%
              dateCast() 
## Warning: Unknown or uninitialised column: `period`.
## Warning: Unknown or uninitialised column: `year`.
## Please be sure to have columns named 'year' and 'period' in your dataframe as they are returned from the bls_api() function.
chart <- indicator %>% ggplot() + 
  geom_line(mapping = aes(x=date,y=Decrease),color="red",size=1)  +
  geom_line(mapping = aes(x=date,y=Increase),color="blue",size=1)  +
     labs(title = "CURRENT Work Hour Changes: Increasing or Decreasing", 
          subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Percentage from previous month",
       caption = "Data source: FRED Philadelphia Federal Reserve.     Illustration by @JoeLongSanDiego")+
    theme_economist()

chart + geom_text(aes(x = max(date),y=last(Increase),label="Increase"))+
        geom_text(aes(x = max(date),y=last(Decrease),label="Decrease"))

Future Hours: Percent Reporting Decreases for Federal Reserve District 3 (AWFDNA156MNFRBPHI)

Future Hours; Percent Reporting Increases for Federal Reserve District 3 (AWFINA156MNFRBPHI)

Future Hours; Percent Reporting No Change for Federal Reserve District 3 (AWFNNA156MNFRBPHI)

symbol1 <-fredr_series_observations(series_id = "AWFDNA156MNFRBPHI", 
      observation_start = as.Date("2019-01-01"))
indicator1 <-as.data.frame(symbol1)[,c(1,3)]
symbol2 <-fredr_series_observations(series_id = "AWFINA156MNFRBPHI", 
      observation_start = as.Date("2019-01-01"))
indicator2 <-as.data.frame(symbol2)[,c(1,3)]
symbol3 <-fredr_series_observations(series_id = "AWFNNA156MNFRBPHI", 
      observation_start = as.Date("2019-01-01"))
indicator3 <-as.data.frame(symbol3)[,c(1,3)]

indicator <-full_join(indicator1,indicator2, by="date")
indicator <-full_join(indicator,indicator3, by="date")

colnames(indicator) <- c("date","Decrease","Increase","No_Change")

#------------------------
indicator %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) %>%
   column_spec(3, T, color = "blue" ) %>%
   column_spec(4, T, color = "green" ) 
date Decrease Increase No_Change
2019-01-01 5.7 28.3 58.5
2019-02-01 5.1 20.3 71.2
2019-03-01 11.3 26.4 60.4
2019-04-01 7.0 14.0 75.4
2019-05-01 13.8 19.0 62.1
2019-06-01 18.3 23.3 53.3
2019-07-01 19.3 19.3 59.6
2019-08-01 11.5 14.8 68.9
2019-09-01 15.5 17.2 63.8
2019-10-01 10.5 21.1 64.9
2019-11-01 10.7 26.8 60.7
2019-12-01 10.0 33.3 55.0
2020-01-01 6.7 28.3 60.0
2020-02-01 5.4 39.3 51.8
2020-03-01 5.3 26.3 64.9
2020-04-01 9.5 38.1 42.9
2020-05-01 9.4 24.5 54.7
2020-06-01 10.9 30.4 50.0
2020-07-01 9.6 28.8 55.8
2020-08-01 14.0 26.3 52.6
chart <- indicator %>% ggplot() + 
  geom_line(mapping = aes(x=date,y=Decrease),color="red",size=1)  +
  geom_line(mapping = aes(x=date,y=Increase),color="blue",size=1)  +
   geom_line(mapping = aes(x=date,y=No_Change),color="green",size=1)  +
     labs(title = "FUTURE Work Hour Changes: Increase or Decrease or No Change", 
          subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Percentage from previous month",
       caption = "Data source: FRED Philadelphia Federal Reserve.     Illustration by @JoeLongSanDiego")+
    theme_economist()

chart + geom_text(aes(x = max(date),y=last(Increase),label="Increase"))+
        geom_text(aes(x = max(date),y=last(Decrease),label="Decrease")) +
        geom_text(aes(x = max(date),y=last(No_Change),label="No Change")) 

Weekly Hours Worked: Manufacturing for the United States (HOHWMN02USM065N)

indicator <-fredr_series_observations(series_id = "HOHWMN02USM065N",
        observation_start = as.Date("2019-01-01")) 

indicator[,c(1,3)] %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date value
2019-01-01 41.7
2019-02-01 41.5
2019-03-01 41.6
2019-04-01 41.6
2019-05-01 41.5
2019-06-01 41.8
2019-07-01 41.2
2019-08-01 41.7
2019-09-01 41.7
2019-10-01 41.5
2019-11-01 41.7
2019-12-01 41.9
2020-01-01 41.2
2020-02-01 41.2
2020-03-01 41.1
2020-04-01 38.3
2020-05-01 39.3
2020-06-01 39.9
2020-07-01 40.3
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value), 
                              color = "blue4",size=1) +
  labs(title = "Weekly Hours Worked: Manufacturing for the United States", 
       subtitle = str_glue("from {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Thousands of People",
       caption = "Data source: FRED Federal Reserve.   Illustration by @JoeLongSanDiego")+
    theme_economist()+

geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-08-2020'), ymin = -Inf, ymax = Inf),
                   fill = "grey", alpha = 0.03)

Employment Level - Persons At Work 1-34 Hours, Economic Reasons, All Industries (LNU02032194)

indicator <-fredr_series_observations(series_id = "LNU02032194",
        observation_start = as.Date("2019-01-01")) 

indicator[,c(1,3)] %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date value
2019-01-01 5640
2019-02-01 4561
2019-03-01 4621
2019-04-01 4483
2019-05-01 4160
2019-06-01 4602
2019-07-01 4102
2019-08-01 4316
2019-09-01 3992
2019-10-01 4046
2019-11-01 4110
2019-12-01 4247
2020-01-01 4732
2020-02-01 4600
2020-03-01 5879
2020-04-01 10684
2020-05-01 10429
2020-06-01 9306
2020-07-01 8572
2020-08-01 7488
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value), 
                              color = "blue4",size=1) +
  labs(title = "Part-time employment: All Industries", 
       subtitle = str_glue("At work from 1 to 34 hours \nfrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Thousands of People",
       caption = "Data source: FRED Federal Reserve.   Illustration by @JoeLongSanDiego")+
    theme_economist()+
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-08-2020'), ymin = -Inf, ymax = Inf),
                   fill = "grey", alpha = 0.03)

KC Fed Labor Market Conditions Index, Level of Activity Indicator (FRBKCLMCILA)

indicator <-fredr_series_observations(series_id = "FRBKCLMCILA",
        observation_start = as.Date("2019-01-01")) 

indicator[,c(1,3)] %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date value
2019-01-01 0.8944
2019-02-01 0.9844
2019-03-01 0.9477
2019-04-01 1.0006
2019-05-01 1.0397
2019-06-01 1.0122
2019-07-01 1.1909
2019-08-01 1.0251
2019-09-01 1.0398
2019-10-01 0.9657
2019-11-01 1.0187
2019-12-01 1.0942
2020-01-01 1.1598
2020-02-01 1.0731
2020-03-01 0.1852
2020-04-01 -2.0233
2020-05-01 -1.0691
2020-06-01 -0.5602
2020-07-01 -1.1835
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value), 
                              color = "blue4",size=1) +
  labs(title = "Labor Market Conditions Index", 
       subtitle = str_glue("Zero Index: the long-run average\nfrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Index",
       caption = "Data source: Kansas City Federal Reserve.\nIllustration by @JoeLongSanDiego")+
    theme_economist()+
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-07-2020'), ymin = -Inf, ymax = Inf),
                   fill = "grey", alpha = 0.03)+
    geom_hline(yintercept = 0,color="red")

Employment Level - Part-Time for Economic Reasons, Slack Work or Business Conditions, All Industries (LNS12032195)

indicator <-fredr_series_observations(series_id = "LNS12032195",
        observation_start = as.Date("2019-01-01")) 

indicator[,c(1,3)] %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
date value
2019-01-01 3402
2019-02-01 2779
2019-03-01 2887
2019-04-01 2868
2019-05-01 2647
2019-06-01 2704
2019-07-01 2392
2019-08-01 2683
2019-09-01 2600
2019-10-01 2747
2019-11-01 2634
2019-12-01 2657
2020-01-01 2655
2020-02-01 2776
2020-03-01 4043
2020-04-01 9939
2020-05-01 9543
2020-06-01 7939
2020-07-01 7281
2020-08-01 6214
# plotting data
indicator %>% ggplot() + geom_line(mapping = aes(x=date,y=value), 
                              color = "blue4",size=1) +
  labs(title = "Under-employment: Part-Time Employment due to Business Condition ", 
       subtitle = str_glue("Zero Index: the long-run average\nfrom {min(indicator$date)} through {max(indicator$date)}"),
       x="Monthly", y="Thousands of Persons",
       caption = "Data source:  U.S. Bureau of Labor Statistics (LNS12032195).\nIllustration by @JoeLongSanDiego")+
    theme_economist()+
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-07-2020'), ymin = -Inf, ymax = Inf),
                   fill = "grey", alpha = 0.03)

    # geom_hline(yintercept = 0,color="red")