Nicolle Salamanca
Histogramas de distribución para humedad relativa y temperatura media


Gráficos de distribución

Estandarización
mediaTmed
[1] 26.20355
mediaRhum
[1] 87.97851
sdTmed
[1] 1.174865
sdRhum
[1] 7.024278
desv = sd(x)
Error in is.data.frame(x) : objeto 'x' no encontrado
par(mfrow = c(2, 2))
hist(Tmed, main = 'Tmedia no estandarizada', xlab = 'Temperatura Media (°C)', col = 'red' )
hist(etmedia, main = 'Tmedia estandarizada', xlab = 'Temperatura Media', col = 'pink')
hist(RHUM, main = 'RHum no estandarizada', xlab = 'Humedad Relativa (%)', col = 'orange')
hist(ehumr, main = 'RHum estandarizada', xlab = 'Humedad Relativa', col = 'gray')

par(mfrow = c(1, 2))
plot(etmedia, ehumr, pch = 20, cex = 0.5, main = 'Estandarizado')
points(x = mean(etmedia), y = mean(ehumr), col = 'orange', pch = 20)
plot(Tmed,RHUM, pch =20, cex = 0.5, main = 'No Estandarizado')
points(x = mean(Tmed), y = mean(RHUM), col = 'red', pch = 20)

Gráfico no estandarizado con la misma escala en sus ejes
plot(Tmed,RHUM, pch =20, cex = 0.5, main = 'No Estandarizado', ylab = 'Humedad Relativa (%)', xlab = 'Temperatura Media (°C)', ylim = c(0,100), xlim = c(0,100))

cor(Tmed,RHUM)
[1] -0.6034923
LS0tDQp0aXRsZTogIlRhcmVhIDItIENvbXB1dGFjacOzbiB5IGVzdGFkw61zdGljYSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpOaWNvbGxlIFNhbGFtYW5jYQ0KDQpIaXN0b2dyYW1hcyBkZSBkaXN0cmlidWNpw7NuIHBhcmEgaHVtZWRhZCByZWxhdGl2YSB5IHRlbXBlcmF0dXJhIG1lZGlhIA0KYGBge3J9DQpkYXRvc2NsaW1hPWBBY2FjaWFzX01ldGFfMjAxMV8yMDE5X0pPSU5ULigxKS4oMSlgDQphdHRhY2goZGF0b3NjbGltYSkNCg0KaGlzdChSSFVNLCBjb2wgPSAibGlnaHQgYmx1ZSIsIG1haW4gPSAiRGlzdHJpYnVjacOzbiBkZSBsYSBodW1lZGFkIHJlbGF0aXZhIiwgeWxpbSA9IGMgKDAsIDc1MCksIHhsaW0gPSBjICg1MCwgMTIwKSwgeGxhYiA9ICdIdW1lZGFkIFJlbGF0aXZhICglKScpDQpgYGANCg0KYGBge3J9DQpoaXN0KFRtZWQsIGNvbCA9ICJibHVlIiwgbWFpbiA9ICJEaXN0cmlidWNpw7NuIGRlIGxhIHRlbXBlcmF0dXJhIG1lZGlhIiwgeGxhYiA9ICJUZW1wZXJhdHVyYSBNZWRpYSAowrBDKSIsIHlsaW0gPSBjKDAsNDAwKSwgeGxpbSA9IGMoMjEsIDMwKSkNCmBgYA0KR3LDoWZpY29zIGRlIGRpc3RyaWJ1Y2nDs24NCmBgYHtyfQ0KcGxvdChUbWVkLCBSSFVNLCB5bGFiID0gJ0h1bWVkYWQgUmVsYXRpdmEgKCUpJywgeGxhYiA9ICdUZW1wZXJhdHVyYSBNZWRpYSAowrBDKScsIG1haW4gPSAnSHVtZWRhZCByZWxhdGl2YSB2cyBUZW1wZXJhdHVyYSBtZWRpYScpDQpgYGANCkVzdGFuZGFyaXphY2nDs24NCmBgYHtyfQ0KbWVkaWFUbWVkPSBtZWFuKFRtZWQpDQptZWRpYVRtZWQNCmBgYA0KYGBge3J9DQptZWRpYVJodW09IG1lYW4oUkhVTSkNCm1lZGlhUmh1bQ0KYGBgDQpgYGB7cn0NCnNkVG1lZD0gc2QoVG1lZCkNCnNkVG1lZA0KYGBgDQpgYGB7cn0NCnNkUmh1bT0gc2QoUkhVTSkNCnNkUmh1bQ0KYGBgDQpgYGB7cn0NCmVzdGFuZCA9IGZ1bmN0aW9uKHgpew0KICBtZWRpYSA9IG1lYW4oeCkNCiAgZGVzdiA9IHNkKHgpDQogIHogPSAoeCAtIG1lZGlhKS9kZXN2DQogIHJldHVybih6KQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KZXRtZWRpYT1lc3RhbmQoVG1lZCkNCmBgYA0KYGBge3J9DQplaHVtciA9IGVzdGFuZChSSFVNKQ0KYGBgDQoNCmBgYHtyfQ0KcGFyKG1mcm93ID0gYygyLCAyKSkNCmhpc3QoVG1lZCwgbWFpbiA9ICdUbWVkaWEgbm8gZXN0YW5kYXJpemFkYScsIHhsYWIgPSAnVGVtcGVyYXR1cmEgTWVkaWEgKMKwQyknLCBjb2wgPSAncmVkJyApDQpoaXN0KGV0bWVkaWEsIG1haW4gPSAnVG1lZGlhIGVzdGFuZGFyaXphZGEnLCB4bGFiID0gJ1RlbXBlcmF0dXJhIE1lZGlhJywgY29sID0gJ3BpbmsnKQ0KaGlzdChSSFVNLCBtYWluID0gJ1JIdW0gbm8gZXN0YW5kYXJpemFkYScsIHhsYWIgPSAnSHVtZWRhZCBSZWxhdGl2YSAoJSknLCBjb2wgPSAnb3JhbmdlJykNCmhpc3QoZWh1bXIsIG1haW4gPSAnUkh1bSBlc3RhbmRhcml6YWRhJywgeGxhYiA9ICdIdW1lZGFkIFJlbGF0aXZhJywgY29sID0gJ2dyYXknKQ0KYGBgDQpgYGB7cn0NCnBhcihtZnJvdyA9IGMoMSwgMikpDQpwbG90KGV0bWVkaWEsIGVodW1yLCBwY2ggPSAyMCwgY2V4ID0gMC41LCBtYWluID0gJ0VzdGFuZGFyaXphZG8nKQ0KcG9pbnRzKHggPSBtZWFuKGV0bWVkaWEpLCB5ID0gbWVhbihlaHVtciksIGNvbCA9ICdvcmFuZ2UnLCBwY2ggPSAyMCkNCnBsb3QoVG1lZCxSSFVNLCBwY2ggPTIwLCBjZXggPSAwLjUsIG1haW4gPSAnTm8gRXN0YW5kYXJpemFkbycpDQpwb2ludHMoeCA9IG1lYW4oVG1lZCksIHkgPSBtZWFuKFJIVU0pLCBjb2wgPSAncmVkJywgcGNoID0gMjApDQpgYGANCkdyw6FmaWNvIG5vIGVzdGFuZGFyaXphZG8gY29uIGxhIG1pc21hIGVzY2FsYSBlbiBzdXMgZWplcw0KYGBge3J9DQpwbG90KFRtZWQsUkhVTSwgcGNoID0yMCwgY2V4ID0gMC41LCBtYWluID0gJ05vIEVzdGFuZGFyaXphZG8nLCB5bGFiID0gJ0h1bWVkYWQgUmVsYXRpdmEgKCUpJywgeGxhYiA9ICdUZW1wZXJhdHVyYSBNZWRpYSAowrBDKScsIHlsaW0gPSBjKDAsMTAwKSwgeGxpbSA9IGMoMCwxMDApKQ0KYGBgDQpgYGB7cn0NCmNvcihUbWVkLFJIVU0pDQpgYGANCg0K