Simular datos de de temperatura y humedad relativa
Se evalúan 1776 datos de variables climáticas en Acacias, Meta. Estas variables fueron la humedad relativa y la temperatura media. Se van a estandarizar, encontrar la correlación y graficar.
library(readxl)
Acacias <- read_excel("Acacias.xlsx",
col_types = c("numeric", "text", "text",
"text", "numeric", "numeric", "text",
"text", "numeric", "text"))
View(Acacias)
Tmed=Acacias$Tmed
Hum=Acacias$RHUM
# funcion para estandarizar
estand = function(x){
media = mean(x)
desv = sd(x)
z = (x - media)/desv
return(z)
}
# estandarizando la temperatura
Tmed_z = estand(Tmed)
# estandarizando la humedad relativa
Hum_z = estand(Hum)
par(mfrow = c(2, 2))
hist(Tmed, main = 'Temperatura no estandarizada', xlab = 'Temperatura media (°C)', col='red')
hist(Tmed_z, main = 'Temperatura estandarizada', xlab = 'Temperatura media', col='red')
hist(Hum, main = 'Humedad no estandarizada', xlab = 'Humedad Relativa', col='lightblue')
hist(Hum_z, main = 'Humedad estandarizada', xlab = 'Humedad Relativa', col='lightblue')

Media de la temperatura sin estandarizar:
(med_Tmed = mean(Tmed))
[1] 26.20355
Desviasión de la temperatura sin estandarizar:
(desv_Tmed = sd(Tmed))
[1] 1.174865
Media de la temperatura media estandarizada = 0
(med_Tmed_z = mean(Tmed_z))
[1] -8.148022e-16
Desviación de la temperatura estandarizada = 1
(desv_acTmedc_z = sd(Tmed_z))
[1] 1
Media de la humedad sin estandarizar
(med_Hum = mean(Hum))
[1] 87.97851
Desviación de la humedad sin estandarizar
(desv_Hum = sd(Hum))
[1] 7.024278
Media de la humedad estandarizada = 0
(med_Hum_z = mean(Hum_z)) #
[1] 2.866366e-16
Desviación de la humedad estandarizada = 1
(desv_Hum_z = sd(Hum_z))
[1] 1
par(mfrow = c(1, 2))
plot(Tmed_z, Hum_z, pch = 19, cex = 0.8, main = 'Estandarizado', xlab = 'Temperatura media', ylab = 'Humedad')
points(x = mean(Tmed_z), y = mean(Hum_z), col = 'pink', pch = 19)
plot(Tmed, Hum, pch = 19, cex = 0.8, main = 'No Estandarizado', xlab = 'Temperatura media', ylab = 'Humedad')
points(x = mean(Tmed), y = mean(Hum), col = 'green', pch = 19)

Correlaciones
- Sin estandarizar la temperatura y humedad
cr = cor(Tmed, Hum, method = 'pearson')
cr
[1] -0.6034923
- Estandarizando la temperatura y humedad
cr_z = cor(Tmed_z, Hum_z, method = 'pearson')
cr_z
[1] -0.6034923
*Spearman sin estandarizar la temperatura y humedad
cr = cor(Tmed, Hum, method = 'spearman')
cr
[1] -0.6447906
Spearman estandarizando la temperatura y humedad
cr_z = cor(Tmed_z, Hum_z, method = 'spearman')
cr_z
[1] -0.6447906
Modoelos de crecimiento usando growthmodels
growth_gr <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3)
plot(growth_gr, main= 'Generalised Richard', col = 'blue', pch=15)

growth_gz <- gompertz(0:10, 10, 0.5, 0.3)
plot(growth_gz, main= 'Gompertz', col = 'darkgreen', pch=15)

growth_bl <- blumberg(0:10, 10, 2, 0.5)
plot(growth_bl, col = 'black', pch=15, main = "Blumberg")

growth_br <- brody(0:10, 10, 5, 0.3)
plot(growth_br, col = 'red', pch=15, main = 'Brody')

growth_w <- weibull(0:10, 10, 0.5, 0.3, 0.5)
plot (growth_w, main = 'Weibull', col = 'purple', pch = 15)

growth_Bt <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)
plot (growth_Bt, main = 'Von Bertalanffy', col = 'yellow', pch = 15)

growth_sd <- stannard(0:10, 1, .2, .1, .5)
plot (growth_sd, main='Stannard', col = 'darkblue', pch = 15)

growth_ss <- schnute(0:10, 10, 5, .5, .5)
plot(growth_ss, main= 'Schnute', col = 'blue', pch = 15)

growth_nE <- negativeExponential(0:10, 1, 0.3)
plot(growth_nE, main= 'Negative Exponential', col = 'red', pch = 15)

growth_mon <- monomolecular(0:10, 10, 0.5, 0.3)
plot(growth_mon, main= 'Monomolecular', col = 'gray', pch = 15)

growth_m <- mmf(0:10, 10, 0.5, 4, 1)
plot(growth_m, main= 'Morgan-Mercer-Flodin', col = 'violet', pch = 15)

growth_m <- mitcherlich(0:10, 10, 0.5, 0.3)
plot(growth_m, main= 'Mitcherlich', col = 'red', pch = 19, ylim = c(0,10), xlim = c(0,10))

growth_lgg <- loglogistic(0:10, 10, 0.5, 0.3)
plot(growth_lgg, main= 'Log-logistic', col = 'orange', pch = 19, ylim = c(0,10), xlim = c(0,10))

growth_lc <-logistic(0:10, 10, 0.5, 0.3)
plot(growth_lc, main= 'Logistic', col = 'darkgreen', pch = 15)

growth_cR <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)
plot(growth_cR, col = 'blue', pch=, main = 'ChapmanRichards')

growth_lg <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3)
plot (growth_lg, main = 'Generalised Logistic', col = 'green', pch = 15)

NA
NA
LS0tCnRpdGxlOiAiVGFyZWEgTsKwMiBDb21wdXRhY2nDs24gRXN0YWTDrXN0aWNhIgphdXRob3I6ICJOaWNvbMOhcyBDaWZ1ZW50ZXMiCmRhdGU6ICIwNy8wOS8yMDIwIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyBTaW11bGFyIGRhdG9zIGRlIGRlIHRlbXBlcmF0dXJhIHkgaHVtZWRhZCByZWxhdGl2YQoKU2UgZXZhbMO6YW4gMTc3NiBkYXRvcyBkZSB2YXJpYWJsZXMgY2xpbcOhdGljYXMgZW4gQWNhY2lhcywgTWV0YS4gRXN0YXMgdmFyaWFibGVzIGZ1ZXJvbiBsYSBodW1lZGFkIHJlbGF0aXZhIHkgbGEgdGVtcGVyYXR1cmEgbWVkaWEuIApTZSB2YW4gYSBlc3RhbmRhcml6YXIsIGVuY29udHJhciBsYSBjb3JyZWxhY2nDs24geSBncmFmaWNhci4KCgpgYGB7cix3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHJlYWR4bCkKQWNhY2lhcyA8LSByZWFkX2V4Y2VsKCJBY2FjaWFzLnhsc3giLCAKICAgIGNvbF90eXBlcyA9IGMoIm51bWVyaWMiLCAidGV4dCIsICJ0ZXh0IiwgCiAgICAgICAgInRleHQiLCAibnVtZXJpYyIsICJudW1lcmljIiwgInRleHQiLCAKICAgICAgICAidGV4dCIsICJudW1lcmljIiwgInRleHQiKSkKVmlldyhBY2FjaWFzKQoKVG1lZD1BY2FjaWFzJFRtZWQKSHVtPUFjYWNpYXMkUkhVTQoKCiMgZnVuY2lvbiBwYXJhIGVzdGFuZGFyaXphcgplc3RhbmQgPSBmdW5jdGlvbih4KXsKICBtZWRpYSA9IG1lYW4oeCkKICBkZXN2ID0gc2QoeCkKICB6ID0gKHggLSBtZWRpYSkvZGVzdgogIHJldHVybih6KQp9CgojIGVzdGFuZGFyaXphbmRvIGxhIHRlbXBlcmF0dXJhClRtZWRfeiA9IGVzdGFuZChUbWVkKQoKIyBlc3RhbmRhcml6YW5kbyBsYSBodW1lZGFkIHJlbGF0aXZhCkh1bV96ID0gZXN0YW5kKEh1bSkKCnBhcihtZnJvdyA9IGMoMiwgMikpCgpoaXN0KFRtZWQsIG1haW4gPSAnVGVtcGVyYXR1cmEgbm8gZXN0YW5kYXJpemFkYScsIHhsYWIgPSAnVGVtcGVyYXR1cmEgbWVkaWEgKMKwQyknLCBjb2w9J3JlZCcpCmhpc3QoVG1lZF96LCBtYWluID0gJ1RlbXBlcmF0dXJhIGVzdGFuZGFyaXphZGEnLCB4bGFiID0gJ1RlbXBlcmF0dXJhIG1lZGlhJywgY29sPSdyZWQnKQpoaXN0KEh1bSwgbWFpbiA9ICdIdW1lZGFkIG5vIGVzdGFuZGFyaXphZGEnLCB4bGFiID0gJ0h1bWVkYWQgUmVsYXRpdmEnLCBjb2w9J2xpZ2h0Ymx1ZScpCmhpc3QoSHVtX3osIG1haW4gPSAnSHVtZWRhZCBlc3RhbmRhcml6YWRhJywgeGxhYiA9ICdIdW1lZGFkIFJlbGF0aXZhJywgY29sPSdsaWdodGJsdWUnKQpgYGAKCk1lZGlhIGRlIGxhIHRlbXBlcmF0dXJhIHNpbiBlc3RhbmRhcml6YXI6IAoKYGBge3J9CihtZWRfVG1lZCA9IG1lYW4oVG1lZCkpCmBgYApEZXN2aWFzacOzbiBkZSBsYSB0ZW1wZXJhdHVyYSBzaW4gZXN0YW5kYXJpemFyOgoKYGBge3J9CihkZXN2X1RtZWQgPSBzZChUbWVkKSkKYGBgCgpNZWRpYSBkZSBsYSB0ZW1wZXJhdHVyYSBtZWRpYSBlc3RhbmRhcml6YWRhID0gMAoKYGBge3J9CihtZWRfVG1lZF96ID0gbWVhbihUbWVkX3opKQpgYGAKRGVzdmlhY2nDs24gZGUgbGEgdGVtcGVyYXR1cmEgZXN0YW5kYXJpemFkYSA9IDEKCmBgYHtyfQooZGVzdl9hY1RtZWRjX3ogPSBzZChUbWVkX3opKQpgYGAKTWVkaWEgZGUgbGEgaHVtZWRhZCBzaW4gZXN0YW5kYXJpemFyCgpgYGB7cn0KKG1lZF9IdW0gPSBtZWFuKEh1bSkpIAoKYGBgCkRlc3ZpYWNpw7NuIGRlIGxhIGh1bWVkYWQgc2luIGVzdGFuZGFyaXphcgoKYGBge3J9CihkZXN2X0h1bSA9IHNkKEh1bSkpCmBgYApNZWRpYSBkZSBsYSBodW1lZGFkIGVzdGFuZGFyaXphZGEgPSAwCgpgYGB7cn0KKG1lZF9IdW1feiA9IG1lYW4oSHVtX3opKSAjIApgYGAKRGVzdmlhY2nDs24gZGUgbGEgaHVtZWRhZCBlc3RhbmRhcml6YWRhID0gMQoKYGBge3J9CihkZXN2X0h1bV96ID0gc2QoSHVtX3opKSAKYGBgCgpgYGB7cn0KcGFyKG1mcm93ID0gYygxLCAyKSkKcGxvdChUbWVkX3osIEh1bV96LCBwY2ggPSAxOSwgY2V4ID0gMC44LCBtYWluID0gJ0VzdGFuZGFyaXphZG8nLCB4bGFiID0gJ1RlbXBlcmF0dXJhIG1lZGlhJywgeWxhYiA9ICdIdW1lZGFkJykKcG9pbnRzKHggPSBtZWFuKFRtZWRfeiksIHkgPSBtZWFuKEh1bV96KSwgY29sID0gJ3BpbmsnLCBwY2ggPSAxOSkKcGxvdChUbWVkLCBIdW0sIHBjaCA9IDE5LCBjZXggPSAwLjgsIG1haW4gPSAnTm8gRXN0YW5kYXJpemFkbycsIHhsYWIgPSAnVGVtcGVyYXR1cmEgbWVkaWEnLCB5bGFiID0gJ0h1bWVkYWQnKQpwb2ludHMoeCA9IG1lYW4oVG1lZCksIHkgPSBtZWFuKEh1bSksIGNvbCA9ICdncmVlbicsIHBjaCA9IDE5KQpgYGAKCiMjIyBDb3JyZWxhY2lvbmVzCgoqIFNpbiBlc3RhbmRhcml6YXIgbGEgdGVtcGVyYXR1cmEgeSBodW1lZGFkCgpgYGB7cn0KY3IgPSBjb3IoVG1lZCwgSHVtLCBtZXRob2QgPSAncGVhcnNvbicpCmNyCmBgYAoqIEVzdGFuZGFyaXphbmRvIGxhIHRlbXBlcmF0dXJhIHkgaHVtZWRhZApgYGB7cn0KY3JfeiA9IGNvcihUbWVkX3osIEh1bV96LCBtZXRob2QgPSAncGVhcnNvbicpCmNyX3oKYGBgCipTcGVhcm1hbiBzaW4gZXN0YW5kYXJpemFyIGxhIHRlbXBlcmF0dXJhIHkgaHVtZWRhZApgYGB7cn0KY3IgPSBjb3IoVG1lZCwgSHVtLCBtZXRob2QgPSAnc3BlYXJtYW4nKQpjcgpgYGAKU3BlYXJtYW4gZXN0YW5kYXJpemFuZG8gbGEgdGVtcGVyYXR1cmEgeSBodW1lZGFkCmBgYHtyfQpjcl96ID0gY29yKFRtZWRfeiwgSHVtX3osIG1ldGhvZCA9ICdzcGVhcm1hbicpCmNyX3oKYGBgCgojIyMgTW9kb2Vsb3MgZGUgY3JlY2ltaWVudG8gdXNhbmRvIF9ncm93dGhtb2RlbHNfCgpgYGB7cn0KZ3Jvd3RoX2dyIDwtIGdlbmVyYWxpc2VkUmljaGFyZCgwOjEwLCA1LCAxMCwgMC4zLCAwLjUsIDEsIDMpCnBsb3QoZ3Jvd3RoX2dyLCBtYWluPSAnR2VuZXJhbGlzZWQgUmljaGFyZCcsIGNvbCA9ICdibHVlJywgcGNoPTE1KQoKZ3Jvd3RoX2d6IDwtIGdvbXBlcnR6KDA6MTAsIDEwLCAwLjUsIDAuMykKcGxvdChncm93dGhfZ3osIG1haW49ICdHb21wZXJ0eicsIGNvbCA9ICdkYXJrZ3JlZW4nLCBwY2g9MTUpCgpncm93dGhfYmwgPC0gYmx1bWJlcmcoMDoxMCwgMTAsIDIsIDAuNSkKcGxvdChncm93dGhfYmwsIGNvbCA9ICdibGFjaycsIHBjaD0xNSwgbWFpbiA9ICJCbHVtYmVyZyIpCgpncm93dGhfYnIgPC0gYnJvZHkoMDoxMCwgMTAsIDUsIDAuMykKcGxvdChncm93dGhfYnIsIGNvbCA9ICdyZWQnLCBwY2g9MTUsIG1haW4gPSAnQnJvZHknKQoKZ3Jvd3RoX3cgPC0gd2VpYnVsbCgwOjEwLCAxMCwgMC41LCAwLjMsIDAuNSkKcGxvdCAoZ3Jvd3RoX3csIG1haW4gPSAnV2VpYnVsbCcsIGNvbCA9ICdwdXJwbGUnLCBwY2ggPSAxNSkKCmdyb3d0aF9CdCA8LSB2b25CZXJ0YWxhbmZmeSgwOjEwLCAxMCwgMC41LCAwLjMsIDAuNSkKcGxvdCAoZ3Jvd3RoX0J0LCBtYWluID0gJ1ZvbiBCZXJ0YWxhbmZmeScsIGNvbCA9ICd5ZWxsb3cnLCBwY2ggPSAxNSkKCmdyb3d0aF9zZCA8LSBzdGFubmFyZCgwOjEwLCAxLCAuMiwgLjEsIC41KQpwbG90IChncm93dGhfc2QsIG1haW49J1N0YW5uYXJkJywgY29sID0gJ2RhcmtibHVlJywgcGNoID0gMTUpCgpncm93dGhfc3MgPC0gc2NobnV0ZSgwOjEwLCAxMCwgNSwgLjUsIC41KQpwbG90KGdyb3d0aF9zcywgbWFpbj0gJ1NjaG51dGUnLCBjb2wgPSAnYmx1ZScsIHBjaCA9IDE1KQoKZ3Jvd3RoX25FIDwtIG5lZ2F0aXZlRXhwb25lbnRpYWwoMDoxMCwgMSwgMC4zKQpwbG90KGdyb3d0aF9uRSwgbWFpbj0gJ05lZ2F0aXZlIEV4cG9uZW50aWFsJywgY29sID0gJ3JlZCcsIHBjaCA9IDE1KQoKZ3Jvd3RoX21vbiA8LSBtb25vbW9sZWN1bGFyKDA6MTAsIDEwLCAwLjUsIDAuMykKcGxvdChncm93dGhfbW9uLCBtYWluPSAnTW9ub21vbGVjdWxhcicsIGNvbCA9ICdncmF5JywgcGNoID0gMTUpCgpncm93dGhfbSA8LSBtbWYoMDoxMCwgMTAsIDAuNSwgNCwgMSkKcGxvdChncm93dGhfbSwgbWFpbj0gJ01vcmdhbi1NZXJjZXItRmxvZGluJywgY29sID0gJ3Zpb2xldCcsIHBjaCA9IDE1KQoKZ3Jvd3RoX20gPC0gbWl0Y2hlcmxpY2goMDoxMCwgMTAsIDAuNSwgMC4zKQpwbG90KGdyb3d0aF9tLCBtYWluPSAnTWl0Y2hlcmxpY2gnLCBjb2wgPSAncmVkJywgcGNoID0gMTksIHlsaW0gPSBjKDAsMTApLCB4bGltID0gYygwLDEwKSkKCmdyb3d0aF9sZ2cgPC0gbG9nbG9naXN0aWMoMDoxMCwgMTAsIDAuNSwgMC4zKQpwbG90KGdyb3d0aF9sZ2csIG1haW49ICdMb2ctbG9naXN0aWMnLCBjb2wgPSAnb3JhbmdlJywgcGNoID0gMTksIHlsaW0gPSBjKDAsMTApLCB4bGltID0gYygwLDEwKSkKCmdyb3d0aF9sYyA8LWxvZ2lzdGljKDA6MTAsIDEwLCAwLjUsIDAuMykKcGxvdChncm93dGhfbGMsIG1haW49ICdMb2dpc3RpYycsIGNvbCA9ICdkYXJrZ3JlZW4nLCBwY2ggPSAxNSkKCmdyb3d0aF9jUiA8LSBjaGFwbWFuUmljaGFyZHMoMDoxMCwgMTAsIDAuNSwgMC4zLCAwLjUpCnBsb3QoZ3Jvd3RoX2NSLCBjb2wgPSAnYmx1ZScsIHBjaD0sIG1haW4gPSAnQ2hhcG1hblJpY2hhcmRzJykKCmdyb3d0aF9sZyA8LSBnZW5lcmFsaXNlZExvZ2lzdGljKDA6MTAsIDUsIDEwLCAwLjMsIDAuNSwgMykKcGxvdCAoZ3Jvd3RoX2xnLCBtYWluID0gJ0dlbmVyYWxpc2VkIExvZ2lzdGljJywgY29sID0gJ2dyZWVuJywgcGNoID0gMTUpCgoKYGBgCgo=