Spatial Point Patterns Analysis: First-order Analysis Methods

IS415 Geospatial Analytics and Application

Instructor: Dr. Kam Tin Seong.

Assoc. Professor of Information Systems (Practice)

1. Getting Started

Research aim

To discover the spatial point processes of childcare centres in Singapore

Questions to answer

  • Are childcare centres in Singapore randomly distributed?
  • If not, then where are the locations with higher concentration of childcare centres?

2. Load/Install necessary R packages

  • spatstat - useful functions for point pattern analysis
  • raster - reads, writes, manipulates, analyses and model raster data (gridded spatial data)
  • maptools - in this hands-on ex, mainly use it to convert Spatial objects into ppp format of spatstat
packages = c('rgdal','maptools','raster', 'spatstat', 'tmap')
for (p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p, character.only = T)
}

3. Spatial Data Wrangling

Importing shapefiles

We use readOGR() of the rgdal package to import the 3 shapefiles in R’s spatialpolygonsdataframe.

childcare <- readOGR(dsn = "data", layer= "CHILDCARE")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\SMU Year 3 Sem 1\IS415 Geospatial Analytics and Application\Week 4\Hands-on_Ex04\data", layer: "CHILDCARE"
## with 1312 features
## It has 18 fields
sg <- readOGR(dsn = "data", layer= "CostalOutline")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\SMU Year 3 Sem 1\IS415 Geospatial Analytics and Application\Week 4\Hands-on_Ex04\data", layer: "CostalOutline"
## with 60 features
## It has 4 fields
mpsz <- readOGR(dsn = "data", layer= "MP14_SUBZONE_WEB_PL")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\SMU Year 3 Sem 1\IS415 Geospatial Analytics and Application\Week 4\Hands-on_Ex04\data", layer: "MP14_SUBZONE_WEB_PL"
## with 323 features
## It has 15 fields

Ensure same projection system (CRS)

crs(childcare)
## CRS arguments:
##  +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
## +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
crs(sg)
## CRS arguments:
##  +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
## +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
crs(mpsz)
## CRS arguments:
##  +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
## +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs

Visualize the 3 shapefiles

par(mfrow = c(1,3))
plot(childcare)
plot(mpsz)
plot(sg)

Or another way to plot all 3 shapefiles into one map is to use add=TRUE

plot(sg, border= 'lightgrey')
plot(sg, add = TRUE)
plot(childcare, add = TRUE)
plot(mpsz, add = TRUE)

Interactive map:

tmap_mode('plot')
## tmap mode set to plotting
tm_shape(childcare) +
  tm_dots()

Converting spatial point data frame into sp format

we need to convert SpatialDataFrame -> Spatial object (sp) -> ppp object form for spatstat

childcare_sp <- as(childcare, "SpatialPoints")
sg_sp <- as(sg, "SpatialPolygons")

The visualisation looks the same

plot(childcare_sp)

So, what’s the difference?

childcare
## class       : SpatialPointsDataFrame 
## features    : 1312 
## extent      : 11203.01, 45404.24, 25667.6, 49300.88  (xmin, xmax, ymin, ymax)
## crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs 
## variables   : 18
## names       : OBJECTID, ADDRESSBLO, ADDRESSBUI, ADDRESSPOS,                                                                          ADDRESSSTR, ADDRESSTYP,          DESCRIPTIO,                                                                           HYPERLINK, LANDXADDRE, LANDYADDRE,                    NAME, PHOTOURL, ADDRESSFLO,          INC_CRC, FMEL_UPD_D, ... 
## min values  :        1,         NA,         NA,     038983,                                                1 & 3 Stratton Road SINGAPORE 806787,         NA, Child Care Services, http://www.childcarelink.gov.sg/ccls/chdcentpart/ChdCentPartLnk.jsp?centreCd=EB0001,          0,          0,    3-IN-1 FAMILY CENTRE,       NA,         NA, 000FD4E317754866, 2016/12/23, ... 
## max values  :     1312,         NA,         NA,     829646, UPPER BASEMENT LEVEL WEST WING TERMINAL 1 SINGAPORE CHANGI AIRPORT SINGAPORE 819642,         NA, Child Care Services, http://www.childcarelink.gov.sg/ccls/chdcentpart/ChdCentPartLnk.jsp?centreCd=YW0150,          0,          0, ZEE SCHOOLHOUSE PTE LTD,       NA,         NA, FFC5A1F137748668, 2017/03/16, ...
childcare_sp
## class       : SpatialPoints 
## features    : 1312 
## extent      : 11203.01, 45404.24, 25667.6, 49300.88  (xmin, xmax, ymin, ymax)
## crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs

Converting sp format to spatstat’s ppp format

childcare_ppp <- as(childcare_sp, "ppp")
childcare_ppp
## Planar point pattern: 1312 points
## window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
plot(childcare_ppp)

summary(childcare_ppp)
## Planar point pattern:  1312 points
## Average intensity 1.623186e-06 points per square unit
## 
## *Pattern contains duplicated points*
## 
## Coordinates are given to 3 decimal places
## i.e. rounded to the nearest multiple of 0.001 units
## 
## Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
##                     (34200 x 23630 units)
## Window area = 808287000 square units

Handling duplicated points

check for duplicated points in a ppp object

any(duplicated(childcare_ppp))
## [1] TRUE

we can use multiplicity() function to count the number of coincidence point

multiplicity(childcare_ppp)
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
##    1    1    4    1    1    1    1    1    1    1    1    1    1    1    1    1 
##   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48 
##    1    1    1    1    1    1    1    1    1    1    3    1    1    1    1    1 
##   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64 
##    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    1 
##   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80 
##    1    1    2    1    1    1    1    1    1    7    1    1    1    1    1    1 
##   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96 
##    1    1    1    1    2    1    1    1    1    1    1    1    1    1    1    1 
##   97   98   99  100  101  102  103  104  105  106  107  108  109  110  111  112 
##    2    1    1    1    1    1    1    2    1    1    1    1    1    1    1    1 
##  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128 
##    1    1    1    1    1    1    2    1    1    1    1    5    1    1    1    1 
##  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144 
##    2    1    1    1    1    1    1    2    1    1    1    1    1    1    1    1 
##  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160 
##    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    1 
##  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192 
##    1    1    1    1    1    1    1    1    7    1    1    1    1    1    1    1 
##  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208 
##    1    1    1    1    5    1    1    1    1    1    1    2    1    1    1    1 
##  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224 
##    1    1    1    1    1    1    1    1    1    1    1    1    2    1    1    1 
##  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240 
##    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256 
##    1    1    1    1    1    1    1    1    1    2    1    1    1    1    2    2 
##  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272 
##    1    2    1    1    3    1    1    1    1    1    2    1    1    1    1    1 
##  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288 
##    1    1    7    1    1    1    1    2    1    2    1    1    2    1    1    1 
##  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368 
##    4    1    1    1    1    1    1    2    1    1    1    1    1    1    1    1 
##  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384 
##    1    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1 
##  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448 
##    1    7    1    2    1    1    1    1    1    1    1    1    1    1    1    1 
##  449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464 
##    1    3    1    1    1    1    1    1    1    1    1    2    2    2    1    1 
##  465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480 
##    1    1    1    1    1    1    1    2    1    1    1    1    4    1    1    1 
##  481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496 
##    1    1    1    1    1    1    3    1    1    1    1    1    1    1    1    1 
##  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512 
##    1    1    1    1    1    1    1    1    1    1    3    1    1    1    1    1 
##  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528 
##    1    1    1    1    1    1    1    1    4    1    4    1    1    1    2    1 
##  529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560 
##    1    1    1    1    1    1    1    1    1    3    1    1    1    1    1    1 
##  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576 
##    1    1    1    1    4    1    1    1    1    1    1    1    1    1    1    1 
##  577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    2    1    1 
##  593  594  595  596  597  598  599  600  601  602  603  604  605  606  607  608 
##    1    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1 
##  609  610  611  612  613  614  615  616  617  618  619  620  621  622  623  624 
##    1    1    1    1    1    1    1    1    1    1    1    2    1    1    1    1 
##  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640 
##    1    1    1    1    1    1    1    1    1    1    2    1    1    7    1    1 
##  641  642  643  644  645  646  647  648  649  650  651  652  653  654  655  656 
##    1    1    4    1    1    1    2    1    1    1    1    1    1    1    1    1 
##  657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    2    1    3 
##  673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704 
##    2    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  737  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752 
##    4    1    1    1    1    1    1    7    1    1    1    1    1    1    1    1 
##  753  754  755  756  757  758  759  760  761  762  763  764  765  766  767  768 
##    1    1    1    1    1    1    1    1    1    4    1    2    2    1    1    1 
##  769  770  771  772  773  774  775  776  777  778  779  780  781  782  783  784 
##    1    1    2    1    1    1    2    1    1    1    1    1    1    1    2    1 
##  785  786  787  788  789  790  791  792  793  794  795  796  797  798  799  800 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  801  802  803  804  805  806  807  808  809  810  811  812  813  814  815  816 
##    1    1    1    1    5    1    1    1    1    1    1    1    1    1    1    1 
##  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  833  834  835  836  837  838  839  840  841  842  843  844  845  846  847  848 
##    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864 
##    3    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1 
##  865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  881  882  883  884  885  886  887  888  889  890  891  892  893  894  895  896 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  913  914  915  916  917  918  919  920  921  922  923  924  925  926  927  928 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  929  930  931  932  933  934  935  936  937  938  939  940  941  942  943  944 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    3 
##  945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960 
##    1    1    1    1    1    2    1    1    1    1    1    1    1    1    1    1 
##  961  962  963  964  965  966  967  968  969  970  971  972  973  974  975  976 
##    1    1    1    1    1    1    1    1    1    1    1    1    2    1    1    1 
##  977  978  979  980  981  982  983  984  985  986  987  988  989  990  991  992 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
##  993  994  995  996  997  998  999 1000 1001 1002 1003 1004 1005 1006 1007 1008 
##    1    1    1    5    1    1    1    1    1    1    1    1    1    1    1    1 
## 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 
##    1    1    1    1    1    1    1    1    1    1    1    1    5    1    1    1 
## 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 
##    1    1    1    1    1    1    1    1    1    1    1    1    4    1    1    1 
## 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 
##    2    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 
##    1    1    4    1    1    1    1    1    1    1    2    1    1    1    1    1 
## 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 
##    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 
##    2    1    1    1    1    4    2    1    1    1    1    1    1    1    1    1 
## 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 
##    1    1    2    1    1    1    1    1    1    1    1    1    1    1    1    1 
## 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 
##    1    1    1    1    1    1    1    1    1    2    1    1    1    1    1    1 
## 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 
##    1    1    1    1    1    2    1    1    1    1    1    1    1    1    7    2

we can get the locations that have more than one point event by applying conditions to the multiplicity function

sum(multiplicity(childcare_ppp) > 1)
## [1] 85

3 ways to handle duplicate points in visualization:

  • Delete the duplicates - this will mean that some useful points events will be lost
  • Jittering - add small perturbation to the duplicate points so they do not occupy the same space
  • Make each point “unique” + attach duplicates of points to the patterns as marks, as attributes of the points
childcare_ppp_jit <- rjitter(childcare_ppp, retry = TRUE, nsim = 1, drop = TRUE)

plot(childcare_ppp_jit)

Creating owin

In spatstat, owin object is designed to represent polygonal region to confine analysis within a geographical area like Singapore boundary

Convert sg SpatialPolygon (sp) object into owin object
sg_owin <- as(sg_sp, "owin")

plot(sg_owin)

Combine childcare points and study area (sg_owin)

childcareSG_ppp <- childcare_ppp_jit[sg_owin]

plot(childcareSG_ppp)

summary(childcareSG_ppp)
## Planar point pattern:  1312 points
## Average intensity 1.752274e-06 points per square unit
## 
## Coordinates are given to 3 decimal places
## i.e. rounded to the nearest multiple of 0.001 units
## 
## Window: polygonal boundary
## 60 separate polygons (no holes)
##             vertices        area relative.area
## polygon 1         38 1.56140e+04      2.09e-05
## polygon 2        735 4.69093e+06      6.27e-03
## polygon 3         49 1.66986e+04      2.23e-05
## polygon 4         76 3.12332e+05      4.17e-04
## polygon 5       5141 6.36179e+08      8.50e-01
## polygon 6         42 5.58317e+04      7.46e-05
## polygon 7         67 1.31354e+06      1.75e-03
## polygon 8         15 4.46420e+03      5.96e-06
## polygon 9         14 5.46674e+03      7.30e-06
## polygon 10        37 5.26194e+03      7.03e-06
## polygon 11        53 3.44003e+04      4.59e-05
## polygon 12        74 5.82234e+04      7.78e-05
## polygon 13        69 5.63134e+04      7.52e-05
## polygon 14       143 1.45139e+05      1.94e-04
## polygon 15       165 3.38736e+05      4.52e-04
## polygon 16       130 9.40465e+04      1.26e-04
## polygon 17        19 1.80977e+03      2.42e-06
## polygon 18        16 2.01046e+03      2.69e-06
## polygon 19        93 4.30642e+05      5.75e-04
## polygon 20        90 4.15092e+05      5.54e-04
## polygon 21       721 1.92795e+06      2.57e-03
## polygon 22       330 1.11896e+06      1.49e-03
## polygon 23       115 9.28394e+05      1.24e-03
## polygon 24        37 1.01705e+04      1.36e-05
## polygon 25        25 1.66227e+04      2.22e-05
## polygon 26        10 2.14507e+03      2.86e-06
## polygon 27       190 2.02489e+05      2.70e-04
## polygon 28       175 9.25904e+05      1.24e-03
## polygon 29      1993 9.99217e+06      1.33e-02
## polygon 30        38 2.42492e+04      3.24e-05
## polygon 31        24 6.35239e+03      8.48e-06
## polygon 32        53 6.35791e+05      8.49e-04
## polygon 33        41 1.60161e+04      2.14e-05
## polygon 34        22 2.54368e+03      3.40e-06
## polygon 35        30 1.08382e+04      1.45e-05
## polygon 36       327 2.16921e+06      2.90e-03
## polygon 37       111 6.62927e+05      8.85e-04
## polygon 38        90 1.15991e+05      1.55e-04
## polygon 39        98 6.26829e+04      8.37e-05
## polygon 40       415 3.25384e+06      4.35e-03
## polygon 41       222 1.51142e+06      2.02e-03
## polygon 42       107 6.33039e+05      8.45e-04
## polygon 43         7 2.48299e+03      3.32e-06
## polygon 44        17 3.28303e+04      4.38e-05
## polygon 45        26 8.34758e+03      1.11e-05
## polygon 46       177 4.67446e+05      6.24e-04
## polygon 47        16 3.19460e+03      4.27e-06
## polygon 48        15 4.87296e+03      6.51e-06
## polygon 49        66 1.61841e+04      2.16e-05
## polygon 50       149 5.63430e+06      7.53e-03
## polygon 51       609 2.62570e+07      3.51e-02
## polygon 52         8 7.82256e+03      1.04e-05
## polygon 53       976 2.33447e+07      3.12e-02
## polygon 54        55 8.25379e+04      1.10e-04
## polygon 55       976 2.33447e+07      3.12e-02
## polygon 56        61 3.33449e+05      4.45e-04
## polygon 57         6 1.68410e+04      2.25e-05
## polygon 58         4 9.45963e+03      1.26e-05
## polygon 59        46 6.99702e+05      9.35e-04
## polygon 60        13 7.00873e+04      9.36e-05
## enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
##                      (53380 x 33890 units)
## Window area = 748741000 square units
## Fraction of frame area: 0.414

4. Quadrat Analysis

Complete Spatial Randomness (CSR) for a given point pattern, based on quadrat counts by using quadrat.test() of spatstat

  • H0 = The distribution of childcare services are randomly distributed
  • H1 = The distribution of childcare services are not randomly distributed
  • Confident interval = 95%

(Default) Chi-squared test of CSR using quadrat counts

# arguments: 
# x - point pattern, object of class ppp to be subjected to the goodness-of-fit test
# nx, ny = number of quadrats in the x and y directions
qt <- quadrat.test(childcareSG_ppp, nx = 20, ny = 15)
qt
## 
##  Chi-squared test of CSR using quadrat counts
## 
## data:  childcareSG_ppp
## X2 = 2020, df = 184, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 
## Quadrats: 185 tiles (irregular windows)

Since p-value is smaller than the significance level of 0.05 (since confidence interval is 0.95), we can reject the null hypothesis. Thus, the distribution of childcare services are not randomly distributed

plot(childcareSG_ppp)
plot(qt, add = TRUE, cex = 0.1)

Conditional Monte Carlo test of CSR using quadrat counts

quadrat.test(childcareSG_ppp, nx = 20, ny = 15, method = "M", nsim = 999)
## 
##  Conditional Monte Carlo test of CSR using quadrat counts
##  Test statistic: Pearson X2 statistic
## 
## data:  childcareSG_ppp
## X2 = 2020, p-value = 0.002
## alternative hypothesis: two.sided
## 
## Quadrats: 185 tiles (irregular windows)

Since p-value is smaller than the significance level of 0.05 (since confidence interval is 0.95), we can reject the null hypothesis. Thus, the distribution of childcare services are not randomly distributed

5. Nearest Neighbour Analysis

Clark-Evans test of aggregation for a spatial point pattern by using clarkevans.test() of spatstat

  • H0 = The distribution of childcare services are randomly distributed
  • H1 = The distribution of childcare services are not randomly distributed
  • Confident interval = 95%

Testing spatial point patterns using Clark and Evans test

clarkevans.test(childcareSG_ppp, correction = "none", clipregion = 'sg_owin', alternative = c('two.sided'), nsim = 99)
## 
##  Clark-Evans test
##  No edge correction
##  Monte Carlo test based on 99 simulations of CSR with fixed n
## 
## data:  childcareSG_ppp
## R = 0.5603, p-value = 0.02
## alternative hypothesis: two-sided

Since p-value is smaller than the significance level of 0.05 (since confidence interval is 0.95), we can reject the null hypothesis. Thus, the distribution of childcare services are not randomly distributed

6. Kernel Density Estimation

Computing KDE using automatic bandwidth selection method

We use density() function of spatstat, whereby the congif is bw.diggle() for automatic bandwidth selection method.

edge argument - intensity estimate corrected for edge effect bias, default = FALSE

kde_childcareSG_bw <- density(childcareSG_ppp, sigma= bw.diggle, edge=TRUE, kernel= 'gaussian')
plot(kde_childcareSG_bw)

You can see that the density values are too small (from 0 to 0.000035), because svy21 is in meter so the density values computed is in number of points per square meter.

childcareSG_ppp.km <- rescale(childcareSG_ppp, 1000, "km")
kde_childcareSG.bw <- density(childcareSG_ppp.km, sigma = bw.diggle, edge = TRUE, kernel = 'gaussian')
plot(kde_childcareSG.bw)

Working with diff automatic bandwidth methods

Other selection methods are:

  • bw.CvL()
  • bw.scott()
  • bw.ppl()

Bandwidth return by these automatic bandwidth calculation methods

bw.CvL(childcareSG_ppp.km)
##    sigma 
## 4.376167
bw.scott(childcareSG_ppp.km)
##  sigma.x  sigma.y 
## 2.302779 1.493379
bw.ppl(childcareSG_ppp.km)
##     sigma 
## 0.3570812
bw.diggle(childcareSG_ppp.km)
##     sigma 
## 0.3066986

Baddeley et. (2016) suggested the use of the bw.ppl() algorithm because in ther experience it tends to produce the more appropriate values when the pattern consists predominantly of tight clusters. But they also insist that if the purpose of once study is to detect a single tight cluster in the midst of random noise then the bw.diggle() method seems to work best.

kde_childcareSG.ppl <- density(childcareSG_ppp.km, sigma = bw.ppl, edge=TRUE, kernel = 'gaussian')
par(mfrow = c(1,2))
plot(kde_childcareSG.bw, main='bw.diggle')
plot(kde_childcareSG.ppl, main = 'bw.ppl')

Working with diff kernel methods

Default kernel used in density.ppp() is gaussian

Smoothing kernel:

  • “gaussian” (default)
  • “epanechnikov”
  • “quartic”
  • “disc”
par(mfrow=c(1,2))
plot(density(childcareSG_ppp.km, sigma = bw.ppl, edge= TRUE, kernel = 'gaussian'), main= 'Gaussian')
plot(density(childcareSG_ppp.km, sigma = bw.ppl, edge= TRUE, kernel = 'epanechniko'), main= 'Epanechniko')

par(mfrow=c(1,2))
plot(density(childcareSG_ppp.km, sigma = bw.ppl, edge= TRUE, kernel = 'quartic'), main= 'Quartic')
plot(density(childcareSG_ppp.km, sigma = bw.ppl, edge= TRUE, kernel = 'disc'), main= 'Disc')

Computing KDE by defining bandwidth manually

kde_childcareSG_600 <- density(childcareSG_ppp.km, sigma = 0.6, edge = TRUE, kernel = 'gaussian')
plot(kde_childcareSG_600)

Computing KDE by using adaptive bandwidth

Fixed bandwidth method is very sensitive to highly skewed distribution of spatial point patterns

This is where adaptive bandwidth is used instead, by using density.adaptive() function of spatstat

kde_childcareSG_adaptive <- adaptive.density(childcareSG_ppp.km, method='kernel')
plot(kde_childcareSG_adaptive)

Visualisation comparison between fixed & adaptive kernel density estimation outputs

par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "Fixed Bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive Bandwidth")

Converting KDE output into grid object

gridded_kde_childcareSG_bw <- as.SpatialGridDataFrame.im(kde_childcareSG.bw)
spplot(gridded_kde_childcareSG_bw)

Converting gridded output into raster object

Using raster() function of raster package

kde_childcareSG_bw_raster <- raster(gridded_kde_childcareSG_bw)
kde_childcareSG_bw_raster
## class      : RasterLayer 
## dimensions : 128, 128, 16384  (nrow, ncol, ncell)
## resolution : 0.4170614, 0.2647348  (x, y)
## extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
## crs        : NA 
## source     : memory
## names      : v 
## values     : -5.361e-15, 26.22644  (min, max)

Assigning crs/projection systems

projection(kde_childcareSG_bw_raster) <- CRS('+init=EPSG:3414')
kde_childcareSG_bw_raster
## class      : RasterLayer 
## dimensions : 128, 128, 16384  (nrow, ncol, ncell)
## resolution : 0.4170614, 0.2647348  (x, y)
## extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
## crs        : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +units=m +no_defs 
## source     : memory
## names      : v 
## values     : -5.361e-15, 26.22644  (min, max)

Visualizing the output in tmap

tm_shape(kde_childcareSG_bw_raster) +
  tm_raster('v')+
  tm_layout(legend.position = c('right', 'bottom'), frame = FALSE)
## Variable(s) "v" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

7. Comparing Spatial Point Patterns using KDE

Comparing KDE of childcare at Punggol, Tampines, Choa Chu Kang & Jurong West sub zones

Extracting planning area

pg = mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
tm = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
ck = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
jw = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",]
par(mfrow= c(2,2))
plot(pg, main = "Punggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")

Converting spatial polygons data frame to generic sp format

pg_sp <- as(pg, "SpatialPolygons")
tm_sp <- as(tm, "SpatialPolygons")
ck_sp <- as(ck, "SpatialPolygons")
jw_sp <- as(jw, "SpatialPolygons")

Creating owin object

We are not converting into ppp object because they are not spatial points

  • spatial points -> convert to sp -> convert to ppp object
  • spatial polygons -> convert to sp -> convert to owin object
pg_owin = as(pg_sp, "owin")
tm_owin = as(tm_sp, "owin")
ck_owin = as(ck_sp, "owin")
jw_owin = as(jw_sp, "owin")

Combining childcare points + study area (planning subzones)

childcare_pg_ppp = childcare_ppp_jit[pg_owin]
childcare_tm_ppp = childcare_ppp_jit[tm_owin]
childcare_ck_ppp = childcare_ppp_jit[ck_owin]
childcare_jw_ppp = childcare_ppp_jit[jw_owin]
childcare_pg_ppp.km = rescale(childcare_pg_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_jw_ppp.km = rescale(childcare_jw_ppp, 1000, "km")

Visualize the study areas with childcare points:

par(mfrow= c(2,2))
plot(childcare_pg_ppp.km, main= "Punggol")
plot(childcare_tm_ppp.km, main= "Tampines")
plot(childcare_ck_ppp.km, main= "Choa Chu Kang")
plot(childcare_jw_ppp.km, main= "Jurong West")

Computing KDE

kde_children_pg_bw <- density(childcare_pg_ppp.km, sigma = bw.diggle, edge= TRUE, kernel = 'gaussian')
plot(kde_children_pg_bw)

kde_children_tm_bw <- density(childcare_tm_ppp.km, sigma= bw.diggle, edge=TRUE, kernel = 'gaussian')
plot(kde_children_tm_bw)

kde_children_ck_bw <- density(childcare_ck_ppp.km, sigma= bw.diggle, edge=TRUE, kernel = 'gaussian')
plot(kde_children_ck_bw)

kde_children_jw_bw <- density(childcare_jw_ppp.km, sigma= bw.diggle, edge=TRUE, kernel = 'gaussian')
plot(kde_children_jw_bw)

Computing fixed bandwidth KDE

kde_children_ck_250 <- density(childcare_ck_ppp.km, sigma = 0.25, edge= TRUE, kernel = 'gaussian')
plot(kde_children_ck_250)

kde_children_jw_250 <- density(childcare_jw_ppp.km, sigma = 0.25, edge= TRUE, kernel = 'gaussian')
plot(kde_children_jw_250)

kde_children_pg_250 <- density(childcare_pg_ppp.km, sigma = 0.25, edge= TRUE, kernel = 'gaussian')
plot(kde_children_pg_250)

kde_children_tm_250 <- density(childcare_tm_ppp.km, sigma = 0.25, edge= TRUE, kernel = 'gaussian')
plot(kde_children_tm_250)

8. Analysing Spatial Point Process using Nearest Neighbour Index

Clark and Evans test: Choa Chu Kang planning area

clarkevans.test(childcare_ck_ppp, correction = "none", clipregion = NULL, alternative = c('two.sided'), nsim = 999)
## 
##  Clark-Evans test
##  No edge correction
##  Monte Carlo test based on 999 simulations of CSR with fixed n
## 
## data:  childcare_ck_ppp
## R = 1.05, p-value = 0.754
## alternative hypothesis: two-sided

Since p-value is big, 0.852, we should not reject the null hypothesis. Thus, the distribution of childcare services are randomly distributed

Clark and Evans test: Tampines planning area

clarkevans.test(childcare_tm_ppp, correction = "none", clipregion = NULL, alternative = c('two.sided'), nsim = 999)
## 
##  Clark-Evans test
##  No edge correction
##  Monte Carlo test based on 999 simulations of CSR with fixed n
## 
## data:  childcare_tm_ppp
## R = 0.78976, p-value = 0.002
## alternative hypothesis: two-sided

Since p-value is significantly small, 0.002, we can assume that it’s smaller than the significance level of 0.05 (since confidence interval is 0.95), we can reject the null hypothesis. Thus, the distribution of childcare services are not randomly distributed