options(width = 100)
source('./predict.R')

## [1] "2020-09-06"
##                             country cum_confirm cum_heal cum_dead inc_r d_rate d_pm
## 1                       Afghanistan       38398    30537     1412  0.19   3.68   36
## 2                           Albania       10102     5976      312  1.35   3.09  108
## 3                           Algeria       46071    32481     1549  0.65   3.36   35
## 4                         Argentina      471806   349132     9807  2.15   2.08  217
## 5                           Armenia       44783    40089      897  0.30   2.00  303
## 6                         Australia       26278    22462      753  0.27   2.87   30
## 7                           Austria       29271    25043      736  0.63   2.51   82
## 8                        Azerbaijan       37329    34705      548  0.37   1.47   54
## 9                           Bahrain       54771    50645      199  1.25   0.36  117
## 10                       Bangladesh      325157   221275     4479  0.49   1.38   27
## 11                          Belarus       72663    71843      705  0.00   0.97   75
## 12                          Belgium       87825    18555     9906  0.75  11.28  855
## 13                          Bolivia      120241    69566     5398  0.55   4.49  462
## 14           Bosnia and Herzegovina       21560    14709      655  0.56   3.04  200
## 15                           Brazil     4123000  3296702   126230  0.76   3.06  594
## 16                         Bulgaria       17050    12132      671  0.57   3.94   97
## 17                         Cameroon       19604    18448      415  0.00   2.12   16
## 18                           Canada      131495   116136     9143  0.28   6.95  242
## 19                            Chile      420434   392967    11551  0.47   2.75  604
## 20                            China       90539    85337     4735  0.03   5.23    3
## 21                         Colombia      658456   507770    21156  1.29   3.21  416
## 22                       Costa Rica       46920    18211      478  2.71   1.02   94
## 23                    Côte d'Ivoire       18472    17323      119  1.11   0.64    5
## 24                          Croatia       11964     9008      198  1.92   1.65   48
## 25                   Czech Republic       27752    19039      431  1.85   1.55   40
## 26 Democratic Republic of the Congo       10178     9420      259  0.00   2.54   NA
## 27                          Denmark       17974    15979      627  0.00   3.49  108
## 28               Dominican Republic       98776    71901     1840  2.22   1.86  170
## 29                          Ecuador      118045   102304     6724  0.74   5.70  381
## 30                            Egypt       99712    77208     5511  0.13   5.53   54
## 31                      El Salvador       26308    15815      759  0.39   2.89  117
## 32                         Ethiopia       57466    20776      897  1.68   1.56    8
## 33                           France      317706    87447    30724  2.77   9.67  471
## 34                          Germany      251442   223683     9498  0.44   3.78  113
## 35                            Ghana       44777    43693      283  0.00   0.63    9
## 36                           Greece       11386     3804      280  1.66   2.46   27
## 37                        Guatemala       77481    65595     2845  0.57   3.67  159
## 38                         Honduras       64352    13115     2006  0.87   3.12  203
## 39                            India     4131690  3195459    70802  2.08   1.71   51
## 40                        Indonesia      194109   138575     8025  1.81   4.13   29
## 41                             Iran      386658   333900    22293  0.52   5.77  265
## 42                             Iraq      256719   195259     7422  0.00   2.89  185
## 43                          Ireland       29534    23364     1777  0.79   6.02  360
## 44                           Israel      129349   102107     1010  2.32   0.78  117
## 45                            Italy      276338   209610    35534  0.62  12.86  588
## 46                            Japan       72037    62076     1366  1.47   1.90   11
## 47                       Kazakhstan      106301    99018     1588  0.07   1.49   85
## 48                            Kenya       35103    21230      597  0.24   1.70   11
## 49                           Kuwait       89582    80521      544  0.70   0.61  127
## 50                       Kyrgyzstan       44403    39826     1060  0.25   2.39  162
## 51                          Lebanon       20011     5868      187  2.67   0.93   27
## 52                            Libya       17749     2081      285  3.83   1.61   41
## 53                       Madagascar       15319    14139      200  0.33   1.31    7
## 54                           Mexico      629409   438754    67326  1.01  10.70  522
## 55                          Moldova       39797    27799     1063  2.29   2.67  264
## 56                          Morocco       70160    53929     1329  2.27   1.89   36
## 57                            Nepal       46257    28941      289  2.16   0.62   10
## 58                      Netherlands       74787      322     6243  1.25   8.35  364
## 59                          Nigeria       54905    42922     1054  0.30   1.92    5
## 60                           Norway       11296     9348      264  0.58   2.34   49
## 61                             Oman       87072    82406      728  0.80   0.84  143
## 62                         Pakistan      298509   285898     6342  0.16   2.12   29
## 63            Palestinian Territory       26127    16843      181  2.16   0.69   NA
## 64                           Panama       96305    69223     2075  0.74   2.15  481
## 65                         Paraguay       21871    10810      412  5.89   1.88   58
## 66                             Peru      683702   506422    29687  1.01   4.34  900
## 67                      Philippines      237365   184687     3875  1.19   1.63   35
## 68                           Poland       70824    54256     2120  0.62   2.99   56
## 69                         Portugal       60258    42953     1840  1.35   3.05  180
## 70                      Puerto Rico       34492     2267      464  0.73   1.35  162
## 71                            Qatar      120095   116998      203  0.19   0.17   70
## 72     Republika Severna Makedonija       15090    12235      617  1.47   4.09   NA
## 73                          Romania       95014    40307     3893  1.23   4.10  202
## 74                           Russia     1025505   840949    17820  0.51   1.74  122
## 75                     Saudi Arabia      320688   296737     4081  0.24   1.27  117
## 76                          Senegal       13987     9922      290  0.28   2.07   17
## 77                           Serbia       31905    30637      724  0.18   2.27   83
## 78                        Singapore       57022    56267       27  0.07   0.05    5
## 79                     South Africa      636884   561204    14779  0.28   2.32  249
## 80                      South Korea       21177    16146      334  0.79   1.58    7
## 81                            Spain      517133   196958    29418  0.00   5.69  629
## 82                            Sudan       13407     6725      832  1.65   6.21   19
## 83                           Sweden       84985     4971     5835  0.00   6.87  578
## 84                      Switzerland       44401    37100     2013  1.01   4.53  233
## 85                           Turkey      278228   250092     6620  0.60   2.38   78
## 86                          Ukraine      135894    62227     2846  1.57   2.09   65
## 87             United Arab Emirates       73984    66095      388  0.70   0.52   39
## 88                   United Kingdom      344164     1918    41549  0.53  12.07  612
## 89                    United States     6434526  3707186   192886  0.69   3.00  583
## 90                       Uzbekistan       43476    40880      345  0.93   0.79   10
## 91                        Venezuela       52165    42006      420  2.34   0.81   15
## 92                           Zambia       12776    11674      295  1.08   2.31   16

## [1] "Pakistan leading 1 cum_confirm == 0 trimed"

## [1] "Provinces added more than 0 cases in last 1-day:"
##         time country  province cum_confirm cum_heal cum_dead added
## 1 2020-09-06   China Hong Kong        4878     4510       94    21
## 2 2020-09-06   China Guangdong        1763     1727        8     3
## 3 2020-09-06   China   Shaanxi         377      360        3     3
## 4 2020-09-06   China  Shanghai         918      869        7     2
## 5 2020-09-06   China    Fujian         386      372        1     1
## 6 2020-09-06   China    Taiwan         493      473        7     1