.
#defining the sample matrix:
A <- matrix(c(3, 2, 2, -1, 5, 0, 4, 1, 6), 3, 3)
A
## [,1] [,2] [,3]
## [1,] 3 -1 4
## [2,] 2 5 1
## [3,] 2 0 6
A1 <- t(A)
A1
## [,1] [,2] [,3]
## [1,] 3 2 2
## [2,] -1 5 0
## [3,] 4 1 6
#Checking by comparing the Matrix side by side.
A1 %*% A
## [,1] [,2] [,3]
## [1,] 17 7 26
## [2,] 7 26 1
## [3,] 26 1 53
A %*% A1
## [,1] [,2] [,3]
## [1,] 26 5 30
## [2,] 5 30 10
## [3,] 30 10 40
#Checking with NOt equal to operator '!='
A1 %*% A != A %*% A1
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
==> From above two methods we can say that A1 %% A and A %% A1, are not equal in this case
.
#defining the square matrix:
A <- matrix(c(2, 0,2, 0, 2, 0, 2, 0, 2), 3, 3)
A
## [,1] [,2] [,3]
## [1,] 2 0 2
## [2,] 0 2 0
## [3,] 2 0 2
A1 <- t(A)
A1
## [,1] [,2] [,3]
## [1,] 2 0 2
## [2,] 0 2 0
## [3,] 2 0 2
#Checking if A == A1
A == A1
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
#Checking by comparing the Matrix side by side.
A1 %*% A
## [,1] [,2] [,3]
## [1,] 8 0 8
## [2,] 0 4 0
## [3,] 8 0 8
A %*% A1
## [,1] [,2] [,3]
## [1,] 8 0 8
## [2,] 0 4 0
## [3,] 8 0 8
#Checking with equal to operator '=='
A1 %*% A == A %*% A1
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
==> When A and A1 are same then we can get A1 %% A and A %% A1 as equal
.
#defining the square matrix:
A <- matrix(c(2, 6, -2, -1, 5, 0, 4, 1, 6), 3, 3)
A
## [,1] [,2] [,3]
## [1,] 2 -1 4
## [2,] 6 5 1
## [3,] -2 0 6
#Getting cell 2, 1 as 0
A21 <- matrix(c(1, -(6/2), 0, 0, 1, 0, 0, 0, 1), 3, 3)
A21 %*% A
## [,1] [,2] [,3]
## [1,] 2 -1 4
## [2,] 0 8 -11
## [3,] -2 0 6
#Getting cell 3, 1 as 0
A31 <- matrix(c(1, 0, -(-2/2), 0, 1, 0, 0, 0, 1), 3, 3)
A31 %*% A21 %*% A
## [,1] [,2] [,3]
## [1,] 2 -1 4
## [2,] 0 8 -11
## [3,] 0 -1 10
#Getting cell 3, 2 as 0
A32 <- matrix(c(1, 0, 0, 0, 1, -(-1/8), 0, 0, 1), 3, 3)
A32 %*% A31 %*% A21 %*% A
## [,1] [,2] [,3]
## [1,] 2 -1 4.000
## [2,] 0 8 -11.000
## [3,] 0 0 8.625
#Upper Triangular matrix U
U <- A32 %*% A31 %*% A21 %*% A
U
## [,1] [,2] [,3]
## [1,] 2 -1 4.000
## [2,] 0 8 -11.000
## [3,] 0 0 8.625
#Lower Triangular matrix L
L <- solve(A21) %*% solve(A31) %*% solve(A32)
L
## [,1] [,2] [,3]
## [1,] 1 0.000 0
## [2,] 3 1.000 0
## [3,] -1 -0.125 1
#Checking for factorize for square matrix A into LU
A == L %*% U
## [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE