Loading the data and library caret

library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.6.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.6.3
data= read.csv('pml-training.csv', stringsAsFactors= F)
str(data)
## 'data.frame':    19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : chr  "carlitos" "carlitos" "carlitos" "carlitos" ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : chr  "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" ...
##  $ new_window              : chr  "no" "no" "no" "no" ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : chr  "" "" "" "" ...
##  $ kurtosis_picth_belt     : chr  "" "" "" "" ...
##  $ kurtosis_yaw_belt       : chr  "" "" "" "" ...
##  $ skewness_roll_belt      : chr  "" "" "" "" ...
##  $ skewness_roll_belt.1    : chr  "" "" "" "" ...
##  $ skewness_yaw_belt       : chr  "" "" "" "" ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : chr  "" "" "" "" ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : chr  "" "" "" "" ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : chr  "" "" "" "" ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : chr  "" "" "" "" ...
##  $ kurtosis_picth_arm      : chr  "" "" "" "" ...
##  $ kurtosis_yaw_arm        : chr  "" "" "" "" ...
##  $ skewness_roll_arm       : chr  "" "" "" "" ...
##  $ skewness_pitch_arm      : chr  "" "" "" "" ...
##  $ skewness_yaw_arm        : chr  "" "" "" "" ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : chr  "" "" "" "" ...
##  $ kurtosis_picth_dumbbell : chr  "" "" "" "" ...
##  $ kurtosis_yaw_dumbbell   : chr  "" "" "" "" ...
##  $ skewness_roll_dumbbell  : chr  "" "" "" "" ...
##  $ skewness_pitch_dumbbell : chr  "" "" "" "" ...
##  $ skewness_yaw_dumbbell   : chr  "" "" "" "" ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : chr  "" "" "" "" ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : chr  "" "" "" "" ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
# Removing the first 7 columns as they are unnecessary

v= c(-1,-2, -3, -4, -5, -6, -7)
data= data[, v]

# Changing the variable type to numeric and replacing NAs with 0
v1= 2:152
data[,v1]= sapply(data[,v1], as.numeric)
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
data = replace(data, is.na(data),0)

Creating partition

intrain= createDataPartition(y= data$classe, p=.7, list=F)
training= data[intrain,]
testing= data[-intrain,]

Parallel processing

library(parallel)
library(doParallel)
## Warning: package 'doParallel' was built under R version 3.6.3
## Loading required package: foreach
## Loading required package: iterators
cluster <- makeCluster(detectCores() - 1) 
registerDoParallel(cluster)

Fitting the random forest model

Random forest is chosen because it has high predictive accuracy in general, and intrerpretability is not our main concern here.

The classe varaible is to be predicted and it depends on all the remaining variables. Random forest is used with 5-fold cross validation. Cross validation reduces overfitting on the training data and hence the model should perform better on the test data.

fitControl = trainControl(method = "cv", number = 5, allowParallel = TRUE)
mod= train(classe~., method= 'rf', data=training, trControl= fitControl)

stopCluster(cluster)
registerDoSEQ()

# Viewing the results 
mod
## Random Forest 
## 
## 13737 samples
##   152 predictor
##     5 classes: 'A', 'B', 'C', 'D', 'E' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold) 
## Summary of sample sizes: 10990, 10989, 10990, 10990, 10989 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##     2   0.8404311  0.7957442
##    77   0.9923565  0.9903315
##   152   0.9881344  0.9849899
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 77.
mod$resample
##    Accuracy     Kappa Resample
## 1 0.9945395 0.9930918    Fold1
## 2 0.9923553 0.9903317    Fold3
## 3 0.9909025 0.9884933    Fold2
## 4 0.9923581 0.9903329    Fold5
## 5 0.9916272 0.9894076    Fold4
confusionMatrix.train(mod)
## Cross-Validated (5 fold) Confusion Matrix 
## 
## (entries are percentual average cell counts across resamples)
##  
##           Reference
## Prediction    A    B    C    D    E
##          A 28.4  0.2  0.0  0.0  0.0
##          B  0.0 19.1  0.1  0.0  0.0
##          C  0.0  0.1 17.3  0.2  0.0
##          D  0.0  0.0  0.1 16.2  0.1
##          E  0.0  0.0  0.0  0.0 18.3
##                             
##  Accuracy (average) : 0.9924

Greater than 99% accuracy is attained on training data, which is satisfactory.

Checking accuracy on the testing data (Out-of-sample error)

p1= predict(mod, testing)
testing$classe = as.factor(testing$classe)
confusionMatrix(p1, testing$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1669    5    0    0    0
##          B    4 1133    4    0    2
##          C    1    1 1022    5    2
##          D    0    0    0  957    0
##          E    0    0    0    2 1078
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9956          
##                  95% CI : (0.9935, 0.9971)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9944          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9970   0.9947   0.9961   0.9927   0.9963
## Specificity            0.9988   0.9979   0.9981   1.0000   0.9996
## Pos Pred Value         0.9970   0.9913   0.9913   1.0000   0.9981
## Neg Pred Value         0.9988   0.9987   0.9992   0.9986   0.9992
## Prevalence             0.2845   0.1935   0.1743   0.1638   0.1839
## Detection Rate         0.2836   0.1925   0.1737   0.1626   0.1832
## Detection Prevalence   0.2845   0.1942   0.1752   0.1626   0.1835
## Balanced Accuracy      0.9979   0.9963   0.9971   0.9964   0.9979

The accuracy on the testing data is also greater than 99 percent. Out-of-sample error (< 1%) is slightly lesser than in-sample error. The model does better on the test data.

Predicting on the new data

# Applying same processing steps to the new data

valid= read.csv('pml-testing.csv', stringsAsFactors= F)
valid= valid[, v]
valid[,v1]= sapply(valid[,v1], as.numeric)
valid = replace(valid, is.na(valid),0)

# Results
p2= predict(mod, valid)
p2
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E