The Overview:
The goal of this assignment is to create and analyze a survey of six movies and add the data to SQL database where we implement the data from a secure password host to the R markdown. the finding of this report is analyzing the movies and find out which one has the most rating.
I conducted the survey by asking friends and coworkers about the six movies, some of them has seen most of them and some saw only few or the movies. I uploaded the files the Github and you can find the data here
And you can check the files on Github
Loading packages
library(RMySQL)
library(RCurl);
library(sqldf)
## Warning in doTryCatch(return(expr), name, parentenv, handler): unable to load shared object '/Library/Frameworks/R.framework/Resources/modules//R_X11.so':
## dlopen(/Library/Frameworks/R.framework/Resources/modules//R_X11.so, 6): Library not loaded: /opt/X11/lib/libSM.6.dylib
## Referenced from: /Library/Frameworks/R.framework/Resources/modules//R_X11.so
## Reason: image not found
Establish Connection
Connect to MySql local database to pull the tables in the Movies database.
moviescon <- dbConnect(MySQL(),
user="root", password= "karim312",
dbname="movies", host="localhost")
summary(moviescon)
## <MySQLConnection:0,0>
## User: root
## Host: localhost
## Dbname: movies
## Connection type: Localhost via UNIX socket
##
## Results:
Check the tables in the database
I will mainly use the movies database
## [1] "movies" "people"
Create data frame
create data frame and read the table “movies”
moviesdata <- dbReadTable(moviescon, "movies")
moviesdata
## ID Movie People Rating
## 1 1 Frozen 2 Alice 5
## 2 1 Frozen 2 Tony 4
## 3 1 Frozen 2 Zen 5
## 4 1 Frozen 2 Majed NA
## 5 1 Frozen 2 Gary NA
## 6 2 Murder Mystery Alice 4
## 7 2 Murder Mystery Tony 3
## 8 2 Murder Mystery Zen 2
## 9 2 Murder Mystery Majed 5
## 10 2 Murder Mystery Gary 4
## 11 3 Moana Alice 5
## 12 3 Moana Tony 3
## 13 3 Moana Zen 5
## 14 3 Moana Majed NA
## 15 3 Moana Gary NA
## 16 4 Joker Alice NA
## 17 4 Joker Tony 4
## 18 4 Joker Zen 5
## 19 4 Joker Majed 5
## 20 4 Joker Gary 4
## 21 5 The Big Kick Alice 3
## 22 5 The Big Kick Tony NA
## 23 5 The Big Kick Zen 1
## 24 5 The Big Kick Majed 2
## 25 5 The Big Kick Gary 3
## 26 6 Get out Alice 4
## 27 6 Get out Tony 5
## 28 6 Get out Zen 5
## 29 6 Get out Majed 3
## 30 6 Get out Gary 3
Display the data on a bar chart
We start by pulling the average rating for each movie in the table
average <- c(14/3, 18/5, 13/5, 18/4, 9/4, 20/5)
average1 <- as.table(setNames(average, moviesdata))
Here we display the data, we start by changing the axis size to make sure the labels are readable when running the report.
par(mar=c(5,2,2,0))
barplot(average1, main="Movies Rating", xlab="Movie", ylab="Rating", ylim=c(0,6), horiz=FALSE,cex.lab=1 , col= c("lightcyan","mistyrose","beige","yellow","red","green"), names.arg=c("Frozen 2", "MurderMystery", "Moana", "Joker", "The Big Kick", "Get out" ))

Conclusion:
As we see in the barchart, the movies Frozen 2 and Joker got the highest average rating evethough Frozen2 had been watched only by 3 people, while Joker had been watched by all of the people in the rating list. on the other side The Big Sick movie got the worst rating of around only 2 out of 5 and it was watched by 4 people, it seems like they didn’t enjoy it a lot.
Thanks, Karim Hammoud
LS0tCnRpdGxlOiAiV2VlayAxIEFzc2lnbm1lbnQg4oCTIFNRTCBhbmQgUiIKYXV0aG9yOiAiS2FyaW0gSGFtbW91ZCIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydAotLS0KCiMjIFRoZSBPdmVydmlldzoKClRoZSBnb2FsIG9mIHRoaXMgYXNzaWdubWVudCBpcyB0byBjcmVhdGUgYW5kIGFuYWx5emUgYSBzdXJ2ZXkgb2Ygc2l4IG1vdmllcyBhbmQgYWRkIHRoZSBkYXRhIHRvIFNRTCBkYXRhYmFzZSB3aGVyZSB3ZSBpbXBsZW1lbnQgdGhlIGRhdGEgZnJvbSBhIHNlY3VyZSBwYXNzd29yZCBob3N0IHRvIHRoZSBSIG1hcmtkb3duLiB0aGUgZmluZGluZyBvZiB0aGlzIHJlcG9ydCBpcyBhbmFseXppbmcgdGhlIG1vdmllcyBhbmQgZmluZCBvdXQgd2hpY2ggb25lIGhhcyB0aGUgbW9zdCByYXRpbmcuCgoKSSBjb25kdWN0ZWQgdGhlIHN1cnZleSBieSBhc2tpbmcgZnJpZW5kcyBhbmQgY293b3JrZXJzIGFib3V0IHRoZSBzaXggbW92aWVzLCBzb21lIG9mIHRoZW0gaGFzIHNlZW4gbW9zdCBvZiB0aGVtIGFuZCBzb21lIHNhdyBvbmx5IGZldyBvciB0aGUgbW92aWVzLgpJIHVwbG9hZGVkIHRoZSBmaWxlcyB0aGUgR2l0aHViIGFuZCB5b3UgY2FuIGZpbmQgdGhlIFtkYXRhIGhlcmVdKGh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9ha2FyaW1oYW1tb3VkLzYwNy1EYXRhLUFjcXVpc2l0aW9uLWFuZC1NYW5hZ2VtZW50LUNVTlktU1BTLUZhbGwyMDIwL21hc3Rlci9XZWVrJTIwMiUyMFIlMjBhbmQlMjBTUUwvV2VlayUyMDIlMjBtb3ZpZSUyMGRhdGEuY3N2KQoKQW5kIHlvdSBjYW4gY2hlY2sgdGhlIGZpbGVzIG9uIFtHaXRodWJdKGh0dHBzOi8vZ2l0aHViLmNvbS9ha2FyaW1oYW1tb3VkLzYwNy1EYXRhLUFjcXVpc2l0aW9uLWFuZC1NYW5hZ2VtZW50LUNVTlktU1BTLUZhbGwyMDIwL3RyZWUvbWFzdGVyL1dlZWslMjAyJTIwUiUyMGFuZCUyMFNRTCkKCiMjIExvYWRpbmcgcGFja2FnZXMKCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkoUk15U1FMKQpsaWJyYXJ5KFJDdXJsKTsKbGlicmFyeShzcWxkZikKbGlicmFyeShnZ3Bsb3QyKTsKYGBgCgojIyBFc3RhYmxpc2ggQ29ubmVjdGlvbgoKQ29ubmVjdCB0byBNeVNxbCBsb2NhbCBkYXRhYmFzZSB0byBwdWxsIHRoZSB0YWJsZXMgaW4gdGhlIE1vdmllcyBkYXRhYmFzZS4gCgpgYGB7cn0KbW92aWVzY29uIDwtIGRiQ29ubmVjdChNeVNRTCgpLAogICAgICAgICAgICAgICAgIHVzZXI9InJvb3QiLCBwYXNzd29yZD0gImthcmltMzEyIiwKICAgICAgICAgICAgICAgICBkYm5hbWU9Im1vdmllcyIsIGhvc3Q9ImxvY2FsaG9zdCIpCnN1bW1hcnkobW92aWVzY29uKQpgYGAKIyMjIENoZWNrIHRoZSB0YWJsZXMgaW4gdGhlIGRhdGFiYXNlCkkgd2lsbCBtYWlubHkgdXNlIHRoZSBtb3ZpZXMgZGF0YWJhc2UKYGBge3J9CmRiTGlzdFRhYmxlcyhtb3ZpZXNjb24pOwpgYGAKCiMjIENyZWF0ZSBkYXRhIGZyYW1lCmNyZWF0ZSBkYXRhIGZyYW1lIGFuZCByZWFkIHRoZSB0YWJsZSAibW92aWVzIgpgYGB7cn0KbW92aWVzZGF0YSA8LSBkYlJlYWRUYWJsZShtb3ZpZXNjb24sICJtb3ZpZXMiKQptb3ZpZXNkYXRhCmBgYAoKIyMgRGlzcGxheSB0aGUgZGF0YSBvbiBhIGJhciBjaGFydAoKV2Ugc3RhcnQgYnkgcHVsbGluZyB0aGUgYXZlcmFnZSByYXRpbmcgZm9yIGVhY2ggbW92aWUgaW4gdGhlIHRhYmxlCgpgYGB7cn0KYXZlcmFnZSA8LSBjKDE0LzMsIDE4LzUsIDEzLzUsIDE4LzQsIDkvNCwgMjAvNSkKCmF2ZXJhZ2UxIDwtIGFzLnRhYmxlKHNldE5hbWVzKGF2ZXJhZ2UsIG1vdmllc2RhdGEpKQoKYGBgCgpIZXJlIHdlIGRpc3BsYXkgdGhlIGRhdGEsIHdlIHN0YXJ0IGJ5IGNoYW5naW5nIHRoZSBheGlzIHNpemUgdG8gbWFrZSBzdXJlIHRoZSBsYWJlbHMgYXJlIHJlYWRhYmxlIHdoZW4gcnVubmluZyB0aGUgcmVwb3J0LgpgYGB7cn0KcGFyKG1hcj1jKDUsMiwyLDApKQoKYmFycGxvdChhdmVyYWdlMSwgbWFpbj0iTW92aWVzIFJhdGluZyIsIHhsYWI9Ik1vdmllIiwgeWxhYj0iUmF0aW5nIiwgeWxpbT1jKDAsNiksIGhvcml6PUZBTFNFLGNleC5sYWI9MSAsIGNvbD0gYygibGlnaHRjeWFuIiwibWlzdHlyb3NlIiwiYmVpZ2UiLCJ5ZWxsb3ciLCJyZWQiLCJncmVlbiIpLCBuYW1lcy5hcmc9YygiRnJvemVuIDIiLCAiTXVyZGVyTXlzdGVyeSIsICJNb2FuYSIsICJKb2tlciIsICJUaGUgQmlnIEtpY2siLCAiR2V0IG91dCIgKSkKYGBgCgojIyBDb25jbHVzaW9uOgoKQXMgd2Ugc2VlIGluIHRoZSBiYXJjaGFydCwgdGhlIG1vdmllcyBGcm96ZW4gMiBhbmQgSm9rZXIgZ290IHRoZSBoaWdoZXN0IGF2ZXJhZ2UgcmF0aW5nIGV2ZXRob3VnaCBGcm96ZW4yIGhhZCBiZWVuIHdhdGNoZWQgb25seSBieSAzIHBlb3BsZSwgd2hpbGUgSm9rZXIgaGFkIGJlZW4gd2F0Y2hlZCBieSBhbGwgb2YgdGhlIHBlb3BsZSBpbiB0aGUgcmF0aW5nIGxpc3QuIG9uIHRoZSBvdGhlciBzaWRlIFRoZSBCaWcgU2ljayBtb3ZpZSBnb3QgdGhlIHdvcnN0IHJhdGluZyBvZiBhcm91bmQgb25seSAyIG91dCBvZiA1IGFuZCBpdCB3YXMgd2F0Y2hlZCBieSA0IHBlb3BsZSwgaXQgc2VlbXMgbGlrZSB0aGV5IGRpZG4ndCBlbmpveSBpdCBhIGxvdC4KClRoYW5rcywKS2FyaW0gSGFtbW91ZAo=