Project Details

Through this project I have tried to compare LeBron James, Kobe Bryant & Michael Jordan stats per season.

Setting Working Directory

setwd("C:\\Users\\MARK\\Desktop\\Marwin Documents\\Coursera Courses\\24 v 6 v 23")

Checking different files in directory

list.files()
## [1] "Analysis.R"     "BallGame.html"  "BallGame.md"    "BallGame.Rmd"  
## [5] "BallGame_files" "kbdata.xlsx"    "lbjdata.xlsx"   "mjdata.xlsx"

Loading required packages

library(xlsx)
## Warning: package 'xlsx' was built under R version 3.6.3

Getting Data

LBJ<-read.xlsx("./lbjdata.xlsx",sheetIndex=1,rowIndex=1:18)
KB<-read.xlsx("./kbdata.xlsx",sheetIndex=1,rowIndex=1:21)
MJ<-read.xlsx("./mjdata.xlsx",sheetIndex=1,rowIndex=1:20)

Basic Structure & Details of datasets

head(LBJ)
##    Season Age  Tm  Lg Pos  G GS   MP   FG  FGA   FG. X3P X3PA  X3P. X2P X2PA
## 1 2003-04  19 CLE NBA  SG 79 79 39.5  7.9 18.9 0.417 0.8  2.7 0.290 7.1 16.1
## 2 2004-05  20 CLE NBA  SF 80 80 42.4  9.9 21.1 0.472 1.4  3.9 0.351 8.6 17.2
## 3 2005-06  21 CLE NBA  SF 79 79 42.5 11.1 23.1 0.480 1.6  4.8 0.335 9.5 18.3
## 4 2006-07  22 CLE NBA  SF 78 78 40.9  9.9 20.8 0.476 1.3  4.0 0.319 8.6 16.8
## 5 2007-08  23 CLE NBA  SF 75 74 40.4 10.6 21.9 0.484 1.5  4.8 0.315 9.1 17.1
## 6 2008-09  24 CLE NBA  SF 81 81 37.7  9.7 19.9 0.489 1.6  4.7 0.344 8.1 15.2
##    X2P.  eFG.  FT  FTA   FT. ORB DRB TRB AST STL BLK TOV  PF  PTS
## 1 0.438 0.438 4.4  5.8 0.754 1.3 4.2 5.5 5.9 1.6 0.7 3.5 1.9 20.9
## 2 0.499 0.504 6.0  8.0 0.750 1.4 6.0 7.4 7.2 2.2 0.7 3.3 1.8 27.2
## 3 0.518 0.515 7.6 10.3 0.738 0.9 6.1 7.0 6.6 1.6 0.8 3.3 2.3 31.4
## 4 0.513 0.507 6.3  9.0 0.698 1.1 5.7 6.7 6.0 1.6 0.7 3.2 2.2 27.3
## 5 0.531 0.518 7.3 10.3 0.712 1.8 6.1 7.9 7.2 1.8 1.1 3.4 2.2 30.0
## 6 0.535 0.530 7.3  9.4 0.780 1.3 6.3 7.6 7.2 1.7 1.1 3.0 1.7 28.4
head(KB)
##    Season Age  Tm  Lg Pos  G GS   MP   FG  FGA   FG. X3P X3PA  X3P. X2P X2PA
## 1 1996-97  18 LAL NBA  SF 71  6 15.5  2.5  5.9 0.417 0.7  1.9 0.375 1.8  4.0
## 2 1997-98  19 LAL NBA  SF 79  1 26.0  4.9 11.6 0.428 0.9  2.8 0.341 4.0  8.8
## 3 1998-99  20 LAL NBA  SG 50 50 37.9  7.2 15.6 0.465 0.5  2.0 0.267 6.7 13.6
## 4 1999-00  21 LAL NBA  SG 66 62 38.2  8.4 17.9 0.468 0.7  2.2 0.319 7.7 15.7
## 5 2000-01  22 LAL NBA  SG 68 68 40.9 10.3 22.2 0.464 0.9  2.9 0.305 9.4 19.3
## 6 2001-02  23 LAL NBA  SG 80 80 38.3  9.4 20.0 0.469 0.4  1.7 0.250 9.0 18.3
##    X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK TOV  PF  PTS
## 1 0.437 0.477 1.9 2.3 0.819 0.7 1.2 1.9 1.3 0.7 0.3 1.6 1.4  7.6
## 2 0.456 0.469 4.6 5.8 0.794 1.0 2.1 3.1 2.5 0.9 0.5 2.0 2.3 15.4
## 3 0.494 0.482 4.9 5.8 0.839 1.1 4.2 5.3 3.8 1.4 1.0 3.1 3.1 19.9
## 4 0.489 0.488 5.0 6.1 0.821 1.6 4.7 6.3 4.9 1.6 0.9 2.8 3.3 22.5
## 5 0.489 0.484 7.0 8.2 0.853 1.5 4.3 5.9 5.0 1.7 0.6 3.2 3.3 28.5
## 6 0.489 0.479 6.1 7.4 0.829 1.4 4.1 5.5 5.5 1.5 0.4 2.8 2.9 25.2
head(MJ)
##    Season Age  Tm  Lg Pos  G GS   MP   FG  FGA   FG. X3P X3PA  X3P.  X2P X2PA
## 1 1984-85  21 CHI NBA  SG 82 82 38.3 10.2 19.8 0.515 0.1  0.6 0.173 10.1 19.2
## 2 1985-86  22 CHI NBA  SG 18  7 25.1  8.3 18.2 0.457 0.2  1.0 0.167  8.2 17.2
## 3 1986-87  23 CHI NBA  SG 82 82 40.0 13.4 27.8 0.482 0.1  0.8 0.182 13.2 27.0
## 4 1987-88  24 CHI NBA  SG 82 82 40.4 13.0 24.4 0.535 0.1  0.6 0.132 13.0 23.7
## 5 1988-89  25 CHI NBA  SG 81 81 40.2 11.9 22.2 0.538 0.3  1.2 0.276 11.6 21.0
## 6 1989-90  26 CHI NBA  SG 82 82 39.0 12.6 24.0 0.526 1.1  3.0 0.376 11.5 21.0
##    X2P.  eFG.   FT  FTA   FT. ORB DRB TRB AST STL BLK TOV  PF  PTS
## 1 0.526 0.518  7.7  9.1 0.845 2.0 4.5 6.5 5.9 2.4 0.8 3.5 3.5 28.2
## 2 0.474 0.462  5.8  6.9 0.840 1.3 2.3 3.6 2.9 2.1 1.2 2.5 2.6 22.7
## 3 0.491 0.484 10.2 11.9 0.857 2.0 3.2 5.2 4.6 2.9 1.5 3.3 2.9 37.1
## 4 0.546 0.537  8.8 10.5 0.841 1.7 3.8 5.5 5.9 3.2 1.6 3.1 3.3 35.0
## 5 0.553 0.546  8.3  9.8 0.850 1.8 6.2 8.0 8.0 2.9 0.8 3.6 3.0 32.5
## 6 0.548 0.550  7.2  8.5 0.848 1.7 5.1 6.9 6.3 2.8 0.7 3.0 2.9 33.6
str(LBJ)
## 'data.frame':    17 obs. of  30 variables:
##  $ Season: Factor w/ 17 levels "2003-04","2004-05",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Age   : num  19 20 21 22 23 24 25 26 27 28 ...
##  $ Tm    : Factor w/ 3 levels "CLE","LAL","MIA": 1 1 1 1 1 1 1 3 3 3 ...
##  $ Lg    : Factor w/ 1 level "NBA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Pos   : Factor w/ 4 levels "PF","PG","SF",..: 4 3 3 3 3 3 3 3 3 1 ...
##  $ G     : num  79 80 79 78 75 81 76 79 62 76 ...
##  $ GS    : num  79 80 79 78 74 81 76 79 62 76 ...
##  $ MP    : num  39.5 42.4 42.5 40.9 40.4 37.7 39 38.8 37.5 37.9 ...
##  $ FG    : num  7.9 9.9 11.1 9.9 10.6 9.7 10.1 9.6 10 10.1 ...
##  $ FGA   : num  18.9 21.1 23.1 20.8 21.9 19.9 20.1 18.8 18.9 17.8 ...
##  $ FG.   : num  0.417 0.472 0.48 0.476 0.484 0.489 0.503 0.51 0.531 0.565 ...
##  $ X3P   : num  0.8 1.4 1.6 1.3 1.5 1.6 1.7 1.2 0.9 1.4 ...
##  $ X3PA  : num  2.7 3.9 4.8 4 4.8 4.7 5.1 3.5 2.4 3.3 ...
##  $ X3P.  : num  0.29 0.351 0.335 0.319 0.315 0.344 0.333 0.33 0.362 0.406 ...
##  $ X2P   : num  7.1 8.6 9.5 8.6 9.1 8.1 8.4 8.4 9.1 8.7 ...
##  $ X2PA  : num  16.1 17.2 18.3 16.8 17.1 15.2 15 15.3 16.5 14.5 ...
##  $ X2P.  : num  0.438 0.499 0.518 0.513 0.531 0.535 0.56 0.552 0.556 0.602 ...
##  $ eFG.  : num  0.438 0.504 0.515 0.507 0.518 0.53 0.545 0.541 0.554 0.603 ...
##  $ FT    : num  4.4 6 7.6 6.3 7.3 7.3 7.8 6.4 6.2 5.3 ...
##  $ FTA   : num  5.8 8 10.3 9 10.3 9.4 10.2 8.4 8.1 7 ...
##  $ FT.   : num  0.754 0.75 0.738 0.698 0.712 0.78 0.767 0.759 0.771 0.753 ...
##  $ ORB   : num  1.3 1.4 0.9 1.1 1.8 1.3 0.9 1 1.5 1.3 ...
##  $ DRB   : num  4.2 6 6.1 5.7 6.1 6.3 6.4 6.5 6.4 6.8 ...
##  $ TRB   : num  5.5 7.4 7 6.7 7.9 7.6 7.3 7.5 7.9 8 ...
##  $ AST   : num  5.9 7.2 6.6 6 7.2 7.2 8.6 7 6.2 7.3 ...
##  $ STL   : num  1.6 2.2 1.6 1.6 1.8 1.7 1.6 1.6 1.9 1.7 ...
##  $ BLK   : num  0.7 0.7 0.8 0.7 1.1 1.1 1 0.6 0.8 0.9 ...
##  $ TOV   : num  3.5 3.3 3.3 3.2 3.4 3 3.4 3.6 3.4 3 ...
##  $ PF    : num  1.9 1.8 2.3 2.2 2.2 1.7 1.6 2.1 1.5 1.4 ...
##  $ PTS   : num  20.9 27.2 31.4 27.3 30 28.4 29.7 26.7 27.1 26.8 ...
str(KB)
## 'data.frame':    20 obs. of  30 variables:
##  $ Season: Factor w/ 20 levels "1996-97","1997-98",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Age   : num  18 19 20 21 22 23 24 25 26 27 ...
##  $ Tm    : Factor w/ 1 level "LAL": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Lg    : Factor w/ 1 level "NBA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Pos   : Factor w/ 2 levels "SF","SG": 1 1 2 2 2 2 2 2 2 2 ...
##  $ G     : num  71 79 50 66 68 80 82 65 66 80 ...
##  $ GS    : num  6 1 50 62 68 80 82 64 66 80 ...
##  $ MP    : num  15.5 26 37.9 38.2 40.9 38.3 41.5 37.6 40.7 41 ...
##  $ FG    : num  2.5 4.9 7.2 8.4 10.3 9.4 10.6 7.9 8.7 12.2 ...
##  $ FGA   : num  5.9 11.6 15.6 17.9 22.2 20 23.5 18.1 20.1 27.2 ...
##  $ FG.   : num  0.417 0.428 0.465 0.468 0.464 0.469 0.451 0.438 0.433 0.45 ...
##  $ X3P   : num  0.7 0.9 0.5 0.7 0.9 0.4 1.5 1.1 2 2.3 ...
##  $ X3PA  : num  1.9 2.8 2 2.2 2.9 1.7 4 3.3 5.9 6.5 ...
##  $ X3P.  : num  0.375 0.341 0.267 0.319 0.305 0.25 0.383 0.327 0.339 0.347 ...
##  $ X2P   : num  1.8 4 6.7 7.7 9.4 9 9.1 6.8 6.7 10 ...
##  $ X2PA  : num  4 8.8 13.6 15.7 19.3 18.3 19.5 14.8 14.2 20.7 ...
##  $ X2P.  : num  0.437 0.456 0.494 0.489 0.489 0.489 0.465 0.463 0.472 0.482 ...
##  $ eFG.  : num  0.477 0.469 0.482 0.488 0.484 0.479 0.483 0.468 0.482 0.491 ...
##  $ FT    : num  1.9 4.6 4.9 5 7 6.1 7.3 7 8.2 8.7 ...
##  $ FTA   : num  2.3 5.8 5.8 6.1 8.2 7.4 8.7 8.2 10.1 10.2 ...
##  $ FT.   : num  0.819 0.794 0.839 0.821 0.853 0.829 0.843 0.852 0.816 0.85 ...
##  $ ORB   : num  0.7 1 1.1 1.6 1.5 1.4 1.3 1.6 1.4 0.9 ...
##  $ DRB   : num  1.2 2.1 4.2 4.7 4.3 4.1 5.6 3.9 4.5 4.4 ...
##  $ TRB   : num  1.9 3.1 5.3 6.3 5.9 5.5 6.9 5.5 5.9 5.3 ...
##  $ AST   : num  1.3 2.5 3.8 4.9 5 5.5 5.9 5.1 6 4.5 ...
##  $ STL   : num  0.7 0.9 1.4 1.6 1.7 1.5 2.2 1.7 1.3 1.8 ...
##  $ BLK   : num  0.3 0.5 1 0.9 0.6 0.4 0.8 0.4 0.8 0.4 ...
##  $ TOV   : num  1.6 2 3.1 2.8 3.2 2.8 3.5 2.6 4.1 3.1 ...
##  $ PF    : num  1.4 2.3 3.1 3.3 3.3 2.9 2.7 2.7 2.6 2.9 ...
##  $ PTS   : num  7.6 15.4 19.9 22.5 28.5 25.2 30 24 27.6 35.4 ...
str(MJ)
## 'data.frame':    19 obs. of  30 variables:
##  $ Season: Factor w/ 19 levels "1984-85","1985-86",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Age   : num  21 22 23 24 25 26 27 28 29 30 ...
##  $ Tm    : Factor w/ 4 levels "CHI","Did Not Play (Minor League Baseballâ\200”Birmingham Barons)",..: 1 1 1 1 1 1 1 1 1 2 ...
##  $ Lg    : Factor w/ 1 level "NBA": 1 1 1 1 1 1 1 1 1 NA ...
##  $ Pos   : Factor w/ 2 levels "SF","SG": 2 2 2 2 2 2 2 2 2 NA ...
##  $ G     : num  82 18 82 82 81 82 82 80 78 NA ...
##  $ GS    : num  82 7 82 82 81 82 82 80 78 NA ...
##  $ MP    : num  38.3 25.1 40 40.4 40.2 39 37 38.8 39.3 NA ...
##  $ FG    : num  10.2 8.3 13.4 13 11.9 12.6 12.1 11.8 12.7 NA ...
##  $ FGA   : num  19.8 18.2 27.8 24.4 22.2 24 22.4 22.7 25.7 NA ...
##  $ FG.   : num  0.515 0.457 0.482 0.535 0.538 0.526 0.539 0.519 0.495 NA ...
##  $ X3P   : num  0.1 0.2 0.1 0.1 0.3 1.1 0.4 0.3 1 NA ...
##  $ X3PA  : num  0.6 1 0.8 0.6 1.2 3 1.1 1.3 2.9 NA ...
##  $ X3P.  : num  0.173 0.167 0.182 0.132 0.276 0.376 0.312 0.27 0.352 NA ...
##  $ X2P   : num  10.1 8.2 13.2 13 11.6 11.5 11.7 11.5 11.7 NA ...
##  $ X2PA  : num  19.2 17.2 27 23.7 21 21 21.3 21.5 22.7 NA ...
##  $ X2P.  : num  0.526 0.474 0.491 0.546 0.553 0.548 0.551 0.533 0.514 NA ...
##  $ eFG.  : num  0.518 0.462 0.484 0.537 0.546 0.55 0.547 0.526 0.515 NA ...
##  $ FT    : num  7.7 5.8 10.2 8.8 8.3 7.2 7 6.1 6.1 NA ...
##  $ FTA   : num  9.1 6.9 11.9 10.5 9.8 8.5 8.2 7.4 7.3 NA ...
##  $ FT.   : num  0.845 0.84 0.857 0.841 0.85 0.848 0.851 0.832 0.837 NA ...
##  $ ORB   : num  2 1.3 2 1.7 1.8 1.7 1.4 1.1 1.7 NA ...
##  $ DRB   : num  4.5 2.3 3.2 3.8 6.2 5.1 4.6 5.3 5 NA ...
##  $ TRB   : num  6.5 3.6 5.2 5.5 8 6.9 6 6.4 6.7 NA ...
##  $ AST   : num  5.9 2.9 4.6 5.9 8 6.3 5.5 6.1 5.5 NA ...
##  $ STL   : num  2.4 2.1 2.9 3.2 2.9 2.8 2.7 2.3 2.8 NA ...
##  $ BLK   : num  0.8 1.2 1.5 1.6 0.8 0.7 1 0.9 0.8 NA ...
##  $ TOV   : num  3.5 2.5 3.3 3.1 3.6 3 2.5 2.5 2.7 NA ...
##  $ PF    : num  3.5 2.6 2.9 3.3 3 2.9 2.8 2.5 2.4 NA ...
##  $ PTS   : num  28.2 22.7 37.1 35 32.5 33.6 31.5 30.1 32.6 NA ...

Cleaning & Structuring datasets

In this segment I have selected the following stats only: 1. Total Rebounds(TRB) 2. Assists(AST) 3. Steals(STL) 4. Blocks(BLK) 5. Points(PTS) 6. Field Goals% (FG%) 7. 3Field Goal% (FG3%) 8. Effective Field Goal% (eFG%) 9. Free Throws% (FT%).

LBJdf<-data.frame(LBJ$TRB,LBJ$AST,LBJ$STL,LBJ$BLK,LBJ$PTS,LBJ$FG.,LBJ$X3P.,LBJ$eFG.,LBJ$FT.)
colnames(LBJdf)<-c("TRB","AST","STL","BLK","PTS","FG%","FG3%","eFG%","FT%")
head(LBJdf)
##   TRB AST STL BLK  PTS   FG%  FG3%  eFG%   FT%
## 1 5.5 5.9 1.6 0.7 20.9 0.417 0.290 0.438 0.754
## 2 7.4 7.2 2.2 0.7 27.2 0.472 0.351 0.504 0.750
## 3 7.0 6.6 1.6 0.8 31.4 0.480 0.335 0.515 0.738
## 4 6.7 6.0 1.6 0.7 27.3 0.476 0.319 0.507 0.698
## 5 7.9 7.2 1.8 1.1 30.0 0.484 0.315 0.518 0.712
## 6 7.6 7.2 1.7 1.1 28.4 0.489 0.344 0.530 0.780
KBdf<-data.frame(KB$TRB,KB$AST,KB$STL,KB$BLK,KB$PTS,KB$FG.,KB$X3P.,KB$eFG.,KB$FT.)
colnames(KBdf)<-c("TRB","AST","STL","BLK","PTS","FG%","FG3%","eFG%","FT%")
head(KBdf)
##   TRB AST STL BLK  PTS   FG%  FG3%  eFG%   FT%
## 1 1.9 1.3 0.7 0.3  7.6 0.417 0.375 0.477 0.819
## 2 3.1 2.5 0.9 0.5 15.4 0.428 0.341 0.469 0.794
## 3 5.3 3.8 1.4 1.0 19.9 0.465 0.267 0.482 0.839
## 4 6.3 4.9 1.6 0.9 22.5 0.468 0.319 0.488 0.821
## 5 5.9 5.0 1.7 0.6 28.5 0.464 0.305 0.484 0.853
## 6 5.5 5.5 1.5 0.4 25.2 0.469 0.250 0.479 0.829
MJdf<-data.frame(MJ$TRB,MJ$AST,MJ$STL,MJ$BLK,MJ$PTS,MJ$FG.,MJ$X3P.,MJ$eFG.,MJ$FT.)
colnames(MJdf)<-c("TRB","AST","STL","BLK","PTS","FG%","FG3%","eFG%","FT%")
head(MJdf)
##   TRB AST STL BLK  PTS   FG%  FG3%  eFG%   FT%
## 1 6.5 5.9 2.4 0.8 28.2 0.515 0.173 0.518 0.845
## 2 3.6 2.9 2.1 1.2 22.7 0.457 0.167 0.462 0.840
## 3 5.2 4.6 2.9 1.5 37.1 0.482 0.182 0.484 0.857
## 4 5.5 5.9 3.2 1.6 35.0 0.535 0.132 0.537 0.841
## 5 8.0 8.0 2.9 0.8 32.5 0.538 0.276 0.546 0.850
## 6 6.9 6.3 2.8 0.7 33.6 0.526 0.376 0.550 0.848

Basic Stats Function

This function calculates average stats per game in a season for the three players.

stats<-function(x,y,z){
nc<-ncol(x)
LBJ<-numeric(nc)
KB<-numeric(nc)
MJ<-numeric(nc)
for(i in 1:nc){
        LBJ[i]<-mean(x[,i],na.rm=TRUE)
        KB[i]<-mean(y[,i],na.rm=TRUE)
        MJ[i]<-mean(z[,i],na.rm=TRUE)
    }
df<-data.frame(LBJ,KB,MJ)
rownames(df)=c("Avg. TRB","Avg. AST","Avg. STL","Avg. BLK","Avg. PTS","Avg. FG%","Avg FG3%","Avg. eFG%","Avg. FT%")
print("Avg. Stats for a game in a Season")
df
}
stats(LBJdf,KBdf,MJdf)
## [1] "Avg. Stats for a game in a Season"
##                  LBJ       KB         MJ
## Avg. TRB   7.4529412  5.20000  6.1200000
## Avg. AST   7.4352941  4.76000  5.1400000
## Avg. STL   1.5882353  1.41000  2.2933333
## Avg. BLK   0.7411765  0.46000  0.8333333
## Avg. PTS  27.0705882 24.20000 29.4533333
## Avg. FG%   0.5058824  0.44140  0.4882667
## Avg FG3%   0.3438235  0.31770  0.2839333
## Avg. eFG%  0.5441176  0.47620  0.5000000
## Avg. FT%   0.7317647  0.83495  0.8309333

Plotting stats over their entire playing seasons

This function plots stats for their entire playing season.

By default it will print Total PTS per game for all the three players.

For plotting any stat pass the number representing that stat in statplot.

colnames(LBJdf)
## [1] "TRB"  "AST"  "STL"  "BLK"  "PTS"  "FG%"  "FG3%" "eFG%" "FT%"
statplot<-function(s=5)
{
stat<-colnames(LBJdf)[s]
names<-paste("Total",stat,"Per Game")
rng<-range(LBJdf[,s],KBdf[,s],MJdf[,s],na.rm=TRUE)
plot(1:length(LBJdf[,s]),LBJdf[,s],type="l",lwd=3,col="black",ylim=rng,ylab=names,xlab="Season")
lines(1:length(KBdf[,s]),KBdf[,s],type="l",lwd=3,col="purple")
lines(1:length(MJdf[,s]),MJdf[,s],type="l",lwd=3,col="red")
title(main=paste(stat,"Plot"))
legend("bottomright",pch=19,col=c("black","purple","red","yellow"),legend=c("LBJ","KB","MJ","Break-Stats NA"),cex=0.5)
abline(v=c(1:22),lty=3)
}

Plot representing Total Rebounds Per Game in a Season

statplot(1)

Plot representing Total Assists Per Game in a Season

statplot(2)

Plot representing Total Steals Per Game in a Season

statplot(3)

Plot representing Total Blocks Per Game in a Season

statplot(4)

Plot representing Total Points Per Game in a Season

statplot(5)

Plot representing Total Field Goal% Per Game in a Season

statplot(6)

Plot representing Total Field Goal 3% Per Game in a Season

statplot(7)

Plot representing Total Effective Field Goal% Per Game in a Season

statplot(8)

Plot representing Total Free Throw% Per Game in a Season

statplot(9)

Source for Data

  1. Lebron James
  2. Kobe Bryant
  3. Michael Jordan

You can download the data for the players by clicking on their names. The downloaded files will be in .xlsx format which you can convert to .csv format and then use it for analysis.